留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单层MoS2在合金化及应力调控下光催化裂解水产氢的理论研究

徐祥福 陈佳 赖国霞 李天乐 许诗圳 陈星源 朱伟玲

徐祥福, 陈佳, 赖国霞, 李天乐, 许诗圳, 陈星源, 朱伟玲. 单层MoS2在合金化及应力调控下光催化裂解水产氢的理论研究[J]. 燃料化学学报(中英文), 2020, 48(3): 321-327.
引用本文: 徐祥福, 陈佳, 赖国霞, 李天乐, 许诗圳, 陈星源, 朱伟玲. 单层MoS2在合金化及应力调控下光催化裂解水产氢的理论研究[J]. 燃料化学学报(中英文), 2020, 48(3): 321-327.
XU Xiang-fu, CHEN Jia, LAI Guo-xia, LI Tian-le, XU Shi-zhen, CHEN Xing-yuan, ZHU Wei-ling. Theoretical study on enhancing the monolayer MoS2 photocatalytic water splitting with alloying and stress[J]. Journal of Fuel Chemistry and Technology, 2020, 48(3): 321-327.
Citation: XU Xiang-fu, CHEN Jia, LAI Guo-xia, LI Tian-le, XU Shi-zhen, CHEN Xing-yuan, ZHU Wei-ling. Theoretical study on enhancing the monolayer MoS2 photocatalytic water splitting with alloying and stress[J]. Journal of Fuel Chemistry and Technology, 2020, 48(3): 321-327.

单层MoS2在合金化及应力调控下光催化裂解水产氢的理论研究

基金项目: 

国家自然科学基金 11547201

广东省自然科学基金 2017A030307008

广东省教育厅 2018KTSCX144

详细信息
    通讯作者:

    朱伟玲, E-mail: mmzhuweiling@163.com

  • 中图分类号: O562

Theoretical study on enhancing the monolayer MoS2 photocatalytic water splitting with alloying and stress

Funds: 

The project was supported by the National Natural Science Foundation of China 11547201

National Natural Science Foundation of Guangdong Province 2017A030307008

Department of Education of Guangdong Province 2018KTSCX144

  • 摘要: 基于密度泛函的第一性能原理计算方法研究了单层MoS2分别与MoSe2、MoTe2、WS2进行合金化, 以及加入2%应力条件下, 对光催化裂解水性能的影响。计算结果表明, 单层MoS2通过与MoSe2、MoTe2、MoWS2进行合金化, 并施加压应力两种手段进行调控, 可使带隙变大的同时, 提高CBM(conduction band minimum)带边位置, 从而提高光催化分解水的效率。通过能带和态密度的计算表明, 合金元素原子形成的不是孤立能级而是能带, 对载流子寿命影响小。
  • 图  1  MoS2(a)及其合金(Mo9S17Se(b)、Mo9S17Te(c)、Mo8WS18(d))结构示意图

    Figure  1  Structure of MoS2 (a), Mo9S17Se(b), Mo9S17Te (c), Mo8WS18(d)

    图  2  不施加力(a)、施加拉应力(b)和施加压应力(c)的带边位置图

    Figure  2  Calculated band alignments for different conditions (a) original (b) applying stretch strain (c) applying compress strain (the vacuum level is taken as zero reference)

    图  3  MoS2及其合金的能带结构示意图

    Figure  3  Band structures of ((a), (e)) MoS2, ((b), (f)) Mo9S17Se, ((c), (g)) Mo9S17Te, ((d), (f)) Mo8WS18 ((a), (b), (c), (d) are under zero strain condition; (e), (f), (g), (h) are under 2% compress strain condition)

    图  4  三种合金材料在费米能级附近的PDOS谱图

    Figure  4  Projected density of states for (a)MoS2, (b)Mo9S17Se, (c)Mo9S17Te, (d)Mo8WS18 with zero strain condition and (e) MoS2, (f) Mo9S17Se, (g) Mo9S17Te, (h) Mo8WS18 with 2% compress strain condition

    表  1  优化后晶格常数及组成比例

    Table  1  Optimized structure lattice constant

    Material and composition Lattice constant /nm
    Intrinsic MoS2 0.318
    Mo8WS18 0.956
    Mo9S17Te 0.961
    Mo9S17Se 0.958
    下载: 导出CSV

    表  2  结构优化后的键长参数

    Table  2  Bond length of optimized structure

    Material MoS2 Mo8WS18 Mo9S17Te Mo9S17Se
    Bond length S-MO-S S-W-S S-Mo-Te S-Mo-Se
    /nm 0.243 0.241 0.272 0.254
    0.241 0.241 0.240 0.240
    Bond angle
    /(°)
    81.98 82.37 78.15 80.49
    下载: 导出CSV
  • [1] MARTHA S, CHANDRA SAHOO P, PARIDA K M. An overview on visible light responsive metal oxide based photocatalysts for hydrogen energy production[J]. RSC Adv, 2015, 5(76):61535-61553. doi: 10.1039/C5RA11682A
    [2] WANG F, DI VALENTIN C, PACCHIONI G. Doping of WO3 for photocatalytic water splitting:Hints from density functional theory[J]. J Phys Chem C, 2012, 116(16):8901-8909. doi: 10.1021/jp300867j
    [3] LI Y, LI Y L, ARAUJO C M, LUO W, AHUJIA R. Single-layer MoS2 as an efficient photocatalyst[J]. Catal Sci Technol, 2013, 3(9):2214. doi: 10.1039/c3cy00207a
    [4] KUDO A, MISEKI Y. Heterogeneous photocatalyst materials for water splitting[J]. Chem Soc Rev, 2009, 38(1):253-278. doi: 10.1039/B800489G
    [5] SPLENDIANI A, SUN L, ZHANG Y, LI T S. Emerging photoluminescence in monolayer MoS2[J]. Nano Lett, 2010(10):1271-1275. http://li.mit.edu/S/2d/Paper/Splendiani10Sun.pdf
    [6] JARAMILLO T F, JORGENSEN K P, BONDE J, NIELSEN J H, HORCH S, CHORKENDORFF Ⅰ. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts[J]. Science, 2007, 317(5834):100-102. doi: 10.1126/science.1141483
    [7] HU W, LIN L, ZHANG R, YANG C, YANG J L. Highly Efficient photocatalytic water splitting over edge-modified phosphorene nanoribbons[J]. J Am Chem Soc, 2017, 139(43):15429-15436. doi: 10.1021/jacs.7b08474
    [8] ZHUANG H L, HENNIG R G. Single-layer group-Ⅲ monochalcogenide photocatalysts for water splitting[J]. Chem Mater, 2013, 25(15):3232-3238. doi: 10.1021/cm401661x
    [9] DOLUI K, RUNGGER Ⅰ, DAS PEMMARAJU C, SANVITO S. Possible doping strategies for MoS2 monolayers:An ab initio study[J]. Phys Rev B, 2013, 88(7):075420. doi: 10.1103/PhysRevB.88.075420
    [10] MAK K F, LEE C, HONE J, SHAN J, HEINZ T F. Atomically thin MoS2:A new direct-gap semiconductor[J]. Phys Rev Lett, 2010, 105(13):136805. doi: 10.1103/PhysRevLett.105.136805
    [11] HINNEMANN B, MOSES P G, BONDE J, JØRGENSEN K P, NIELSEN J H, HORCH S, CHORKENDORFF Ⅰ, NØRSKOV J. Biomimetic hydrogen evolution:MoS2 nanoparticles as catalyst for hydrogen evolution[J]. J Am Chem Soc, 2005, 127(15):5308-5309. doi: 10.1021/ja0504690
    [12] YANG L, CUI X, ZHANG J, WANG K, SHEN M, ZENG S S, DAYEH S A, FENG L, XIANG B. Lattice strain effects on the optical properties of MoS2 nanosheets[J]. Sci Rep, 2015, 4(1):5649. doi: 10.1038/srep05649
    [13] MA Y, DAI Y, GUO M, NIU C W, ZHU Y T, HUANG B B. Evidence of the existence of magnetism in pristine VX2 monolayers (X=S, Se) and their strain-induced tunable magnetic properties[J]. ACS Nano, 2012, 6(2):1695-1701. doi: 10.1021/nn204667z
    [14] LEE J H, JANG W S, HAN S W, BAIK H K. Efficient hydrogen evolution by mechanically strained MoS2 nanosheets[J]. Langmuir, 2014, 30(32):9866-9873. doi: 10.1021/la501349k
    [15] KANG J, TONGAY S, ZHOU J, LI J B, WU J Q. Band offsets and heterostructures of two-dimensional semiconductors[J]. Appl Phys Lett, 2013, 102(1):012111. doi: 10.1063/1.4774090
    [16] YUE Q, CHANG S, QIN S, LI J B. Functionalization of monolayer MoS2 by substitutional doping:A first-principles study[J]. Phys Lett A, 2013, 377(19/20):1362-1367. https://www.sciencedirect.com/science/article/pii/S0375960113003198
    [17] KIRAN V, MUKHERJEE D, JENJETI R N, SAMPATH S. Active guests in the MoS2/MoSe2 host lattice:Efficient hydrogen evolution using few-layer alloys of MoS2(1-x) Se2x[J]. Nanoscale, 2014, 6(21):12856-12863. doi: 10.1039/C4NR03716B
    [18] LIN Z, THEE M T, ELÍAS A L, FENG S, ZHOU C J, FUJISAWA K, PEREA-LÓPEZ N, CAROZO V, TERRONES H, TERRONES M. Facile synthesis of MoS2 and Mox W1-xS2 triangular monolayers[J]. Apl Mater, 2014, 2(9):092514. doi: 10.1063/1.4895469
    [19] YANG H, ZHANG T, ZHU H, ZHANG M M, WU W W, DU M L. Synthesis of a MoS2(1-x)Se2x ternary alloy on carbon nanofibers as the high efficient water splitting electrocatalyst[J]. Int J Hydrogen Energy, 2017, 42(4):1912-1918. doi: 10.1016/j.ijhydene.2016.10.075
    [20] ZHUANG H L, HENNIG R G. Computational search for single-layer transition-metal dichalcogenide photocatalysts[J]. J Phys Chem C, 2013, 117(40):20440-20445. doi: 10.1021/jp405808a
    [21] LI C, FAN B, LI W, WEN W L, LIU Y, WANG T, SHENG K, YIN Y. Bandgap engineering of monolayer MoS2 under strain:A DFT study[J]. J Korean Phys Soc, 2015, 66(11):1789-1793. doi: 10.3938/jkps.66.1789
    [22] LI T. Ideal strength and phonon instability in single-layer MoS2[J]. Phys Rev B, 2012, 85(23):235407. doi: 10.1103/PhysRevB.85.235407
    [23] JOENSEN P, CROZIER E D, ALBERDING N, FRINDT R F. A study of single-layer and restacked MoS2 by X-ray diffraction and X-ray absorption spectroscopy[J]. J Phys C:Solid State Phys, 1987, 20(26):4043-4053. doi: 10.1088/0022-3719/20/26/009
    [24] KONG L J, LIU G H, QIANG L. Electronic and optical properties of O-doped monolayer MoS2[J]. Comput Mater Sci, 2016, 111:416-423. doi: 10.1016/j.commatsci.2015.10.001
    [25] 李刚, 陈敏强, 赵世雄, 李朋伟, 胡杰, 桑胜波, 侯静静. Se掺杂对单层MoS2电子能带结构和光吸收性质的影响[J].物理化学学报, 2016, 32(12):2905-2912. doi: 10.3866/PKU.WHXB201609201

    LI Gang, CHEN Min-qiang, ZHAO Shi-xiong, LI Peng-wei, HU Jie, SANG Sheng-bo, HOU Jing-jing. Effect of Se doping on the electronic band structure and optical absorption properties of single layer MoS2[J]. Acta Phys Chim Sin, 2016, 32(12):2905-2912. doi: 10.3866/PKU.WHXB201609201
    [26] SINGH N, JABBOUR G, SCHWINGENSCHLÖGL U. Optical and photocatalytic properties of two-dimensional MoS2[J]. Eur Phys J B, 2012, 85(11):392. doi: 10.1140/epjb/e2012-30449-7
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  181
  • HTML全文浏览量:  52
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-22
  • 修回日期:  2020-01-10
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-03-10

目录

    /

    返回文章
    返回