留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矿物质对桦甸油页岩热解产物影响特性

王擎 张宏喜 迟铭书 崔达 许祥成

王擎, 张宏喜, 迟铭书, 崔达, 许祥成. 矿物质对桦甸油页岩热解产物影响特性[J]. 燃料化学学报(中英文), 2016, 44(3): 328-334.
引用本文: 王擎, 张宏喜, 迟铭书, 崔达, 许祥成. 矿物质对桦甸油页岩热解产物影响特性[J]. 燃料化学学报(中英文), 2016, 44(3): 328-334.
WANG Qing, ZHANG Hong-xi, CHI Ming-shu, CUI Da, XU Xiang-cheng. Effect of mineral matter on product evolution during pyrolysis of Huadian oil shale[J]. Journal of Fuel Chemistry and Technology, 2016, 44(3): 328-334.
Citation: WANG Qing, ZHANG Hong-xi, CHI Ming-shu, CUI Da, XU Xiang-cheng. Effect of mineral matter on product evolution during pyrolysis of Huadian oil shale[J]. Journal of Fuel Chemistry and Technology, 2016, 44(3): 328-334.

矿物质对桦甸油页岩热解产物影响特性

基金项目: 

国家自然科学基金 51276034

详细信息
    通讯作者:

    王擎, E-mail: rlx888@126.com

  • 中图分类号: TK16

Effect of mineral matter on product evolution during pyrolysis of Huadian oil shale

Funds: 

The project was supported by the National Natural Science Foundation of China 51276034

  • 摘要: 对桦甸油页岩进行逐级酸洗并对原样及各级酸洗样品的热解产物进行了碳平衡计算以及气相色谱和傅里叶红外光谱实验, 得到了矿物质对油页岩热解不凝性气体、半焦以及页岩油的影响特性.结果表明, 碳酸盐可以促进有机碳和氢向页岩油中转化, 而硅酸盐对有机碳和氢向页岩油中转化具有抑制作用, 碳酸盐和硅酸盐均可以使得页岩油中氢碳原子比降低.碳酸盐促进了油页岩热解产油并抑制了干酪根向不凝气分解转化, 而硅酸盐抑制了油页岩热解产油但对干酪根向不凝气的分解转化具有促进作用.碳酸盐和硅酸盐均可以促进热解不凝气中CO2和H2的生成, 而对CO的生成具有抑制作用, 碳酸盐可以抑制热解不凝气中碳氢化合物的生成, 而硅酸盐对其生成具有促进作用.碳酸盐和硅酸盐均可以使得页岩油中脂肪链长度变短及异构化程度变大, 并能够提高干酪根热解产物的芳构化程度.
  • 图  1  油页岩与干酪根XRD谱图

    Figure  1  XRD patterns of oil shale and Kerogen

    A: apatite; C: calcite; P: pyrite; Q: quartz

    图  2  以有机碳(a) 和干燥无灰基(b) 为基准的各级酸洗样品热解产物比例分配图

    Figure  2  Pyrolysis oil, gas and water yield of oil shale after treatment with various acids on a organic carbon (a) and dry ash-free basis (b)

    图  3  各级酸洗样品不同种类热解不凝气体积浓度分配

    Figure  3  Volumetric concentration of different pyrolysis gases of oil shale after treatment with various acids

    图  4  各级酸洗样品热解页岩油分峰拟合谱图

    Figure  4  Curve-fitting FT-IR spectrum of pyrolysis oil for oil shale after treatment with various acids

    (a), (b): HD-R; (c), (d): HCl; (e), (f): HF

    表  1  桦甸油页岩工业分析及物质组成

    Table  1  Proximate analysis and composition of Huadian oil shale

    SampleProximate analysis w/%Composition of oil shale w/%
    MadAadVadFCadkerogenSOAcarbonatesilica and clay minerals
    HD-R-13.8449.1242.254.7938.180.4326.4934.90
    HD-R-23.8549.0742.494.5938.420.4426.3934.75
    SOA: soluble organics after acid treatment; kerogen: kerogen and insoluble minerals
    下载: 导出CSV

    表  2  样品碳和氢元素的含量

    Table  2  Content of carbon and hydrogen of samples

    SampleUltimate analysis w/%H/C
    (atomic ratio)
    CtdafCodafCcdafHdaf
    HD-R70.3366.094.249.981.812
    HCl61.1061.010.099.181.806
    HF60.9160.890.028.281.631
    HD-RC21.4820.131.351.240.742
    HClC17.6317.580.051.180.808
    HFC15.7615.760.010.640.489
    HD-RO38.5238.525.771.799
    HClO28.3528.354.481.895
    HFO37.9137.916.041.911
    daf: on a dry ash-free basis;Ctdaf: total of organic and inorganic carbon;Codaf: organic carbon;Ccdaf: inorganic carbon
    下载: 导出CSV

    表  3  各级酸洗样品热解页岩油分峰拟合

    Table  3  Curve-fitting FT-IR spectrum results of pyrolysis oil for oil shale after treatment with various acids

    SampleRatio of curve-fitting/%
    CHCH2CH32-benzene3-benzene4-benzeneCH3/CH2ar/al
    HD-R9.3064.4620.204.371.540.1331.346.43
    HCl18.7360.4515.164.381.190.0925.086.00
    HF11.4769.3913.674.490.920.0619.705.79
    2, 3, 4-benzene:2, 3, 4 adjacent H deformation;ar/al:ratio of aromatic to aliphatic
    下载: 导出CSV
  • [1] 钱家麟, 王剑秋, 李术元.世界油页岩资源利用和发展趋势[J].吉林大学学报(地球科学版), 2006, 36(6): 878-887. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200606001.htm

    QIAN Jia-lin, WANG Jian-qiu, LI Shu-yuan. World oil shale utilization and its future[J]. J Jilin Univ (Earth Sci Ed), 2006, 36(6): 878-887. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200606001.htm
    [2] SAXBY J D. Isolation of kerogen in sediments by chemical methods[J]. Chem Geol, 1970, 6: 173-184. doi: 10.1016/0009-2541(70)90017-3
    [3] YÜRÜM Y, DROR Y, LEVY M. Effect of acid dissolution on the mineral matrix and organic matter of Zefa Efe oil shale[J]. Fuel Process Technol, 1985, 11(1): 71-86. doi: 10.1016/0378-3820(85)90017-7
    [4] LU S T, RUTH E, KAPLAN I R. Pyrolysis of kerogens in the absence and presence of montmorillonite-I. The generation, degradation and isomerization of steranes and triterpanes at 200 and 300℃[J]. Org Geochem, 1989, 14(5): 491-499. doi: 10.1016/0146-6380(89)90029-6
    [5] LU S T, KAPLAN I R. Pyrolysis of kerogens in the absence and presence of montmorillonite-II. Aromatic hydrocarbons generated at 200 and 300℃[J]. Org Geochem, 1989, 14(5): 501-510. doi: 10.1016/0146-6380(89)90030-2
    [6] KARABAKAN A, YÜRÜM Y. Effect of the mineral matrix in the reactions of oil shales: 1. Pyrolysis reactions of Turkish Göynük and US Green River oil shales[J]. Fuel, 1998, 77(12): 1303-1309. doi: 10.1016/S0016-2361(98)00045-3
    [7] BORREGO A G, PRADO J G, FUENTE E. Pyrolytic behaviour of Spanish oil shales and their kerogens[J]. J Anal Appl Pyrolysis, 2000, 56(1): 1-21. doi: 10.1016/S0165-2370(99)00092-3
    [8] BALLICE L. Effect of demineralization on yield and composition of the volatile products evolved from temperature-programmed pyrolysis of Beypazari (Turkey) oil shale[J]. Fuel Process Technol, 2005, 86(6): 673-690. doi: 10.1016/j.fuproc.2004.07.003
    [9] ABOULKAS A, EL HARFI K. Study of the kinetics and mechanisms of thermal decomposition of Moroccan Tarfaya oil shale and its kerogen[J]. Oil Shale, 2008, 25(4): 426-443. doi: 10.3176/oil.2008.4.04
    [10] ABOULKAS A, EL HARFI K. Effects of acid treatments on Moroccan Tarfaya oil shale and pyrolysis of oil shale and their kerogen[J]. J Fuel Chem Technol, 2009, 37(6): 659-667. doi: 10.1016/S1872-5813(10)60013-8
    [11] AL-HARAHSHEH A, AL-HARAHSHEH M, AL-OTOOM A. Effect of demineralization of El-lajjun Jordanian oil shale on oil yield[J]. Fuel Process Technol, 2009, 90(6): 818-824. doi: 10.1016/j.fuproc.2009.03.005
    [12] AL-HARAHSHEH M, AL-AYED O, ROBINSON J. Effect of demineralization and heating rate on the pyrolysis kinetics of Jordanian oil shales[J]. Fuel Process Technol, 2011, 92(9): 1805-1811. doi: 10.1016/j.fuproc.2011.04.037
    [13] SERT M, BALLICE L, YVKSEL M. Effect of mineral matter on product yield and composition at isothermal pyrolysis of Turkish oilshales[J]. Oil Shale, 2009, 26(4): 463-474. doi: 10.3176/oil.2009.4.03
    [14] YAN J W, JIANG X M, HAN X X. A TG-FTIR investigation to the catalytic effect of mineral matrix in oil shale on the pyrolysis and combustion of kerogen[J]. Fuel, 2013, 104: 307-317. doi: 10.1016/j.fuel.2012.10.024
    [15] GUO H F, LIN J D, YANG Y D, LIU Y Y. Effect of minerals on the self-heating retorting of oil shale: Self-heating effect and shale-oil production[J]. Fuel, 2014, 118: 186-193. doi: 10.1016/j.fuel.2013.10.058
    [16] CHAO F, YAN J W, HUANG Y R, HAN X X. XRD and TG-FTIR study of the effect of mineral matrix on the pyrolysis and combustion of organic matter in shale char[J]. Fuel, 2015, 139: 502-510. doi: 10.1016/j.fuel.2014.09.021
    [17] 高先志, 张万选, 张厚福.矿物质对热解影响的研究[J].石油实验地质, 1990, 12(2): 201-205. http://www.cnki.com.cn/Article/CJFDTOTAL-SYSD199002010.htm

    GAO Xian-zhi, ZHANG Wan-xuan, ZHANG Hou-fu. Research on the Influence of mineral pyrolysis[J]. Pet Geol Exp, 1990, 12(2): 201-205. http://www.cnki.com.cn/Article/CJFDTOTAL-SYSD199002010.htm
    [18] 刘晓艳.粘土矿物对有机质演化的影响[J].天然气地球科学, 1995, 6(3): 23-26. http://www.cnki.com.cn/Article/CJFDTOTAL-TDKX199501004.htm

    LIU Xiao-yan. The impact of organic evolution of clay minerals[J]. Nat Gas Geosci, 1995, 6(3): 23-26. http://www.cnki.com.cn/Article/CJFDTOTAL-TDKX199501004.htm
    [19] 刘洛夫, 李术元.烃源岩催化生烃机制研究进展[J].地质评论, 2000, 46(5): 491-498. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200005008.htm

    LIU Luo-fu, LI Shu-yuan. Progress of hydrocarbon source rocks in the catalytic mechanism[J]. Geol Rev, 2000, 46(5): 491-498. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200005008.htm
    [20] 房玄, 雷怀彦.粘土矿物对生物-热催化过渡带有机质热解影响的研究[J].天然气地球科学, 1993, 4(6): 80-85. http://www.cnki.com.cn/Article/CJFDTOTAL-TDKX199306008.htm

    FANG xuan, LEI Huai-yan. Research on the influence of organisms-organic pyrolysis by Clay minerals[J]. Nat Gas Geosci, 1993, 4(6): 80-85. http://www.cnki.com.cn/Article/CJFDTOTAL-TDKX199306008.htm
    [21] 张枝焕, 高先志.粘土矿物对干酪根热解产物的影响及其作用机理[J].石油大学学报, 1995, 19(5): 11-17. http://www.cnki.com.cn/Article/CJFDTOTAL-SYDX505.002.htm

    ZHANG Zhi-huan, GAO Xian-zhi. The influence and mechanism of clay minerals on kerogen pyrolysis products[J]. J China Univ Pet (Nat Sci Ed), 1995, 19(5): 11-17. http://www.cnki.com.cn/Article/CJFDTOTAL-SYDX505.002.htm
    [22] WANG Q, BAI J R, SUN B Z. Comprehensive utilization strategy of Huadian oil shale[J]. Oil shale, 2005, 22(3): 305-316. https://www.researchgate.net/publication/286886233_Strategy_of_Huadian_oil_shale_comprehensive_utilization
    [23] AL-HARAHSHEH M, SHAWABKEH R, AL-HARAHSHEH A. Surface modification and characterization of Jordanian kaolinite: Application for lead removal from aqueous solutions[J]. Appl Surf Sci, 2009, 255(18): 8098-8103. doi: 10.1016/j.apsusc.2009.05.024
    [24] 吴平霄.蒙脱石活化及其与微结构变化关系研究[D].广州:中国科学院研究生院(广州地球化学研究所), 2001.

    WU Ping-xiao. Reserch to montmorillonite activation and its microstructure[D]. Guangzhou: Guangzhou Institute of Geochemistry, Academia Sinica, 2001.
    [25] SCACCIA S. TG-FTIR and kinetics of devolatilization of Sulcis coal[J]. J Anal Appl Pyrolysis, 2013, 104(10): 95-102.
    [26] 侯祥麟.中国页岩油工业[M].北京:石油工业出版社, 1984.

    HOU Xiang-lin. China Sshale Oil Industry[M]. Beijing: Petroleum Industry Press, 1984.
    [27] 雷怀彦, 师育新, 关平.铝硅酸盐粘土矿物对形成过渡带气的催化作用研究[J].中国科学, 1997, 27(1): 39-44. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199701006.htm

    LEI Huai-yan, SHI Yu-xin, GUAN Ping. Study of catalysis on transitional gas by clay minerals[J]. Sci China, 1997, 27(1): 39-44. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199701006.htm
    [28] MRÁZIKOVÁ J, SINDLER S, VEVERKA L. Evolution of organic oxygen bonds during pyrolysis of coal[J]. Fuel, 1986, 65(3): 342-345. doi: 10.1016/0016-2361(86)90293-0
    [29] JOSEPH J T, FORRAI T R. Effect of exchangeable cations on liquefaction of low rank coals[J]. Fuel, 1992, 71(1): 75-80. doi: 10.1016/0016-2361(92)90195-T
    [30] 梁虎珍, 王传格, 曾凡桂.应用红外光谱研究脱灰对伊敏褐煤结构的影响[J].燃料化学学报, 2014, 42(2): 129-137. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18345.shtml

    LIANG Hu-zhen, WANG Chuan-ge, ZENG Fan-gui. Effect of demineralization on lignite structure from Yinmin coalfield by FT-IR investigation[J]. J Fuel Chem Technol, 2014, 42(2): 129-137. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18345.shtml
    [31] IBARRA J V, MOLINER R, BONET A J. FT-IR investigation on char formation during the early stages of coal pyrolysis[J]. Fuel, 1994, 73(6): 918-924. doi: 10.1016/0016-2361(94)90287-9
    [32] PANDOLFO A G, JOHNS R B, DYRKACZ G R. Separation and preliminary characterization of high-purity maceral group fractions from an Australian bituminous coal[J]. Energy Fuels, 1988, 2(5): 657-662. doi: 10.1021/ef00011a010
    [33] IBARRA J V, MUNOZ E, MOLINER R. FT-IR study of the evolution of coal structure during the coalification process[J]. Org Geochem, 1996, 24(6): 725-735.
    [34] WANG S, TANG Y, SCHOBERT H H. FT-IR and 13C NMR investigation of coal component of late Permian coals from southern China[J]. Energy Fuels, 2011, 25(12): 5672-5677. doi: 10.1021/ef201196v
    [35] 李凡, 张永发.矿物质对煤显微组分热解的影响[J].燃料化学学报, 1992, 30(3): 300-306. http://www.cnki.com.cn/Article/CJFDTOTAL-RLHX199203011.htm

    LI Fan, ZHANG Yong-fa. Effect of the mineral matter on the pyrolysis reaction of coal macerals[J]. J Fuel Chem Technol, 1992, 30(3): 300-306. http://www.cnki.com.cn/Article/CJFDTOTAL-RLHX199203011.htm
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  101
  • HTML全文浏览量:  39
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-12
  • 修回日期:  2015-11-16
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-03-30

目录

    /

    返回文章
    返回