留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Synthesis and characterization of a novel BiOBr/HPW/Au for the enhanced photocatalytic activity

ZHAO Li-ye WANG Liang LI Chun-hu

赵立业, 王亮, 李春虎. BiOBr/HPW/Au的制备及其光催化性能的研究[J]. 燃料化学学报(中英文), 2020, 48(10): 1263-1269.
引用本文: 赵立业, 王亮, 李春虎. BiOBr/HPW/Au的制备及其光催化性能的研究[J]. 燃料化学学报(中英文), 2020, 48(10): 1263-1269.
ZHAO Li-ye, WANG Liang, LI Chun-hu. Synthesis and characterization of a novel BiOBr/HPW/Au for the enhanced photocatalytic activity[J]. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1263-1269.
Citation: ZHAO Li-ye, WANG Liang, LI Chun-hu. Synthesis and characterization of a novel BiOBr/HPW/Au for the enhanced photocatalytic activity[J]. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1263-1269.

BiOBr/HPW/Au的制备及其光催化性能的研究

基金项目: 

State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering 2018-K21

详细信息
  • 中图分类号: X703

Synthesis and characterization of a novel BiOBr/HPW/Au for the enhanced photocatalytic activity

Funds: 

State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering 2018-K21

More Information
  • 摘要: 采用水热法和光还原法制备了BiOBr/HPW/Au光催化剂。表征结果表明,BiOBr/HPW/Au光催化剂成功制备,在可见光照射下,BiOBr/HPW/Au具有良好的光催化降解罗丹明B活性,其一级反应动力学速率常数是BiOBr的3.55倍。捕获剂实验结果表明,该反应过程中主要的活性物种是·O2-,BiOBr/HPW/Au具有高光催化活性的主要因为是BiOBr、HPW和Au纳米粒子三者的相互作用,提高了BiOBr对可见光的吸收以及电子-空穴对的分离效率,进而提高BiOBr的可见光催化活性。
  • Figure  1  XRD patterns of BiOBr, HPW, BiOBr/HPW and BiOBr/HPW/Au

    Figure  2  High-resolution XPS spectra of Bi 4f (a), Br 3d (b), W 4f(c) and Au 4f (d) for BiOBr/HPW/Au

    Figure  3  SEM images of (a)BiOBr and (b) BiOBr/HPW/Au, EDS pattern (c) and mapping images ((d)-(g)) of BiOBr/HPW/Au

    Figure  4  UV-vis diffuse reflectance spectra (a) and (b) plot of (αEphoton)1/2 versus energy for the band gap energy of BiOBr, BiOBr/HPW and BiOBr/HPW/Au

    Figure  5  Photocurrent responses of BiOBr, BiOBr/HPW and BiOBr/HPW/Au

    Figure  6  (a) Photocatalytic degradation of RhB and (b) the kinetic non-linear fitting curves

    Figure  7  Trapping experiments during RhB degradation by BiOBr/HPW/Au

    Figure  8  Proposed mechanism of photodegradation of RhB over BiOBr/HPW/Au

  • [1] MENG X, LI Z, CHEN J, XIE H, ZHANG Z. Enhanced visible light-induced photocatalytic activity of surface-modified BiOBr with Pd nanoparticles[J]. Appl Surf Sci, 2018, 433:76-87. doi: 10.1016/j.apsusc.2017.09.103
    [2] AO Y, WANG K, WANG P, WANG C, HOU J. Synthesis of novel 2D-2D p-n heterojunction BiOBr/La2Ti2O7 composite photocatalyst with enhanced photocatalytic performance under both UV and visible light irradiation[J]. Appl Catal B:Environ, 2016, 194:157-168. doi: 10.1016/j.apcatb.2016.04.050
    [3] GUO Q, FU L, YAN T, TIAN W, MA D, LI J, JIANG Y, WANG X. Improved photocatalytic activity of porous ZnO nanosheets by thermal deposition graphene-like g-C3N4 for CO2 reduction with H2O vapor[J]. Appl Surf Sci, 2020, 509:144773. doi: 10.1016/j.apsusc.2019.144773
    [4] NGUYEN C H, TRAN M L, TRAN T T V, JUANG R. Enhanced removal of various dyes from aqueous solutions by UV and simulated solar photocatalysis over TiO2/ZnO/rGO composites[J]. Sep Purif Technol, 2020, 232:115962. doi: 10.1016/j.seppur.2019.115962
    [5] YE L, JIN X, LIU C, DING C, XIE H, CHU K, WONG P. Thickness-ultrathin and bismuth-rich strategies for BiOBr to enhance photoreduction of CO2 into solar fuels[J]. Appl Catal B:Environ, 2016, 187:281-290. doi: 10.1016/j.apcatb.2016.01.044
    [6] XU Z, ZHENG R, CHEN Y, ZHU J, BIAN Z. Ordered mesoporous Fe/TiO2 with light enhanced photo-Fenton activity[J]. Chin J Catal, 2019, 40:631-637. http://www.zhangqiaokeyan.com/academic-journal-cn_chinese-journal-catalysis_thesis/0201271316038.html
    [7] WANG Y, LI J, WANG Q. The performance of daylight photocatalytic activity towards degradation of MB by the flower-like and approximate flower-like complexes of graphene with ZnO and Cerium doped ZnO[J]. Optik, 2020, 204:164131. doi: 10.1016/j.ijleo.2019.164131
    [8] QIU B, LI C, SHEN X, WANG W, REN H, LI Y, TANG J. Revealing the size effect of metallic CoS2 on CdS nanorods for photocatalytic hydrogen evolution based on Schottky junction[J]. Appl Catal A:Gen, 2020, 592:117377. doi: 10.1016/j.apcata.2019.117377
    [9] XU C, ZHANG W. Facile synthesis of nitrogen deficient g-C3N4 by copolymerization of urea and formamide for efficient photocatalytic hydrogen evolution[J]. Mol Catal, 2018, 453:85-92. doi: 10.1016/j.mcat.2018.04.029
    [10] GUAN Y, WU J, LIU Q, GU M, LIN Y, QI Y, JIA T, PAN W, HE P, LI Q. Fabrication of BiOI/MoS2 heterojunction photocatalyst with different treatment methods for enhancing photocatalytic performance under visible-light[J]. Mater Res Bull, 2019, 120:110579-110589. doi: 10.1016/j.materresbull.2019.110579
    [11] ALLAGUI L, CHOUCHENE B, GRIES T, MEDJAHDI G, GIROT E, FRAMBOISIER X, AMARA A, BALAN L, SCHNEIDER R. Core/shell rGO/BiOBr particles with visible photocatalytic activity towards water pollutants[J]. Appl Surf Sci, 2019, 490:580-591. doi: 10.1016/j.apsusc.2019.06.091
    [12] SHI Z, ZHANG Y, SHEN X, DUOERKUN G, ZHU B, ZHANG L, LI M, CHEN Z. Fabrication of g-C3N4/BiOBr heterojunctions on carbon fibers as weaveable photocatalyst for degrading tetracycline hydrochloride under visible light[J]. Chem Eng J, 2020, 386:124010. doi: 10.1016/j.cej.2020.124010
    [13] MENG P, HENG H, SUN Y, HUANG J, YANG J, LIU X. Positive effects of phosphotungstic acid on the in-situ solid-state polymerization and visible light photocatalytic activity of polyimide-based photocatalyst[J]. Appl Catal B:Environ, 2018, 226:487-498. doi: 10.1016/j.apcatb.2018.01.004
    [14] XU L, ZANG H, ZHANG Q, CHEN Y, WEI Y, YAN J, ZHAO Y. Photocatalytic degradation of atrazine by H3PW12O40/Ag-TiO2:Kinetics, mechanism and degradation pathways[J]. Chem Eng J, 2013, 232:174-182. doi: 10.1016/j.cej.2013.07.095
    [15] GUO J, YAN D, LAM F, DEKA B, LV X, NG Y, AN A. Self-cleaning BiOBr/Ag photocatalytic membrane for membrane regeneration under visible light in membrane distillation[J]. Chem Eng J, 2019, 378:122173. doi: 10.1016/j.cej.2019.122173
    [16] BAI Y, CHEN T, WANG P, WANG L, YE L, SHI X, BAI W. Size-dependent role of gold in g-C3N4/BiOBr/Au system for photocatalytic CO2 reduction and dye degradation[J]. Sol Energy Mater Sol Cells, 2016, 157:406-414. doi: 10.1016/j.solmat.2016.07.001
    [17] GUAN Z, LI Q, SHEN B, BAO S, ZHANG J, TIAN B. Fabrication of Co3O4 and Au co-modified BiOBr flower-like microspheres with high photocatalytic efficiency for sulfadiazine degradation[J]. Sep Purif Technol, 2020, 234:116100. doi: 10.1016/j.seppur.2019.116100
    [18] XIONG X, DING L, WANG Q, LI Y, JIANG Q, HU J. Synthesis and photocatalytic activity of BiOBr nanosheets with tunable exposed {010} facets[J]. Appl Catal B:Environ, 2016, 188:283-291. doi: 10.1016/j.apcatb.2016.02.018
    [19] DI J, XIA J, JI M, WANG B, YIN S, ZHANG Q, CHEN Z, LI H. Advanced photocatalytic performance of graphene-like BN modified BiOBr flower-like materials for the removal of pollutants and mechanism insight[J]. Appl Catal B:Environ, 2016, 183:254-262. doi: 10.1016/j.apcatb.2015.10.036
    [20] LI H, HU T, LIU J, SONG S, DU N, ZHANG R, HOU W. Thickness-dependent photocatalytic activity of bismuth oxybromide nanosheets with highly exposed (010) facets[J]. Appl Catal B:Environ, 2016, 182:431-438. doi: 10.1016/j.apcatb.2015.09.050
    [21] LI Q, LU M, WANG W, ZHAO W, CHEN G, SHI H. Fabrication of 2D/2D g-C3N4/Au/Bi2WO6 Z-scheme photocatalyst with enhanced visible-light-driven photocatalytic activity[J]. Appl Surf Sci, 2020, 508:144182. doi: 10.1016/j.apsusc.2019.144182
    [22] GAO Z, YAO B, XUE T, MA M. Effect and study of reducing agent NaBH4 on Bi/BiOBr/CdS photocatalyst[J]. Mater Lett, 2020, 259:126874. doi: 10.1016/j.matlet.2019.126874
    [23] SUN Y, MENG P, LIU X. Self-assembly of tungstophosphoric acid/acidified carbon nitride hybrids with enhanced visible-light-driven photocatalytic activity for the degradation of imidacloprid and acetamiprid[J]. Appl Surf Sci, 2018, 456:259-269. doi: 10.1016/j.apsusc.2018.06.104
    [24] AYATI A, TANHAEI B, BAMOHARRM F, AHMADPOUR A, MAYDANNIK P, SILLANPAA M. Photocatalytic degradation of nitrobenzene by gold nanoparticles decorated polyoxometalate immobilized TiO2 nanotubes[J]. Sep Purif Technol, 2016, 171:62-68. doi: 10.1016/j.seppur.2016.07.015
    [25] WANG L, ZHANG H G, GUO C, FENG L J, LI C H, WANG W T. Facile constructing plasmonic Z-scheme Au NPs/g-C3N4/BiOBr for enhanced visible light photocatalytic activity[J]. J Fuel Chem Technol, 2019, 47(7):834-842. doi: 10.1016/S1872-5813(19)30036-2
  • 加载中
图(9)
计量
  • 文章访问数:  113
  • HTML全文浏览量:  105
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-11
  • 修回日期:  2020-10-04
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-10-10

目录

    /

    返回文章
    返回