留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CeOx doping on a TiO2-SiO2 supporter enhances Ag based adsorptive desulfurization for diesel

XU Cheng-zhi ZHENG Mei-qin CHEN Keng HU Hui CHEN Xiao-hui

许承志, 郑美琴, 陈铿, 胡晖, 陈晓晖. CeOx掺杂TiO2-SiO2载体对Ag基柴油脱硫吸附剂性能的影响[J]. 燃料化学学报(中英文), 2016, 44(8): 943-953.
引用本文: 许承志, 郑美琴, 陈铿, 胡晖, 陈晓晖. CeOx掺杂TiO2-SiO2载体对Ag基柴油脱硫吸附剂性能的影响[J]. 燃料化学学报(中英文), 2016, 44(8): 943-953.
XU Cheng-zhi, ZHENG Mei-qin, CHEN Keng, HU Hui, CHEN Xiao-hui. CeOx doping on a TiO2-SiO2 supporter enhances Ag based adsorptive desulfurization for diesel[J]. Journal of Fuel Chemistry and Technology, 2016, 44(8): 943-953.
Citation: XU Cheng-zhi, ZHENG Mei-qin, CHEN Keng, HU Hui, CHEN Xiao-hui. CeOx doping on a TiO2-SiO2 supporter enhances Ag based adsorptive desulfurization for diesel[J]. Journal of Fuel Chemistry and Technology, 2016, 44(8): 943-953.

CeOx掺杂TiO2-SiO2载体对Ag基柴油脱硫吸附剂性能的影响

基金项目: 

国家自然科学基金资助 21376055

详细信息
  • 中图分类号: O643.36

CeOx doping on a TiO2-SiO2 supporter enhances Ag based adsorptive desulfurization for diesel

Funds: 

国家自然科学基金资助 21376055

More Information
  • 摘要: 以钛酸丁酯的乙醇溶液为钛源, 硝酸铈的水溶液为沉淀剂, 采用共浸渍法制备CeOx/TiO2-SiO2复合氧化物作为Ag基柴油脱硫吸附剂的载体, 探究CeOx掺杂TiO2-SiO2载体对吸附剂结构及脱硫性能的影响.结果表明, 采用共浸渍法制备的CeOx/TiO2-SiO2载体中, Ce物种和Ti物种均处于充分分散的状态, 掺杂CeOx可促进Ag活性物种的分散, 还会促进金属态Ag活性物种的氧化, 形成高度分散的Ag氧化物 (Ag2O2) 活性中心, 从而提高吸附剂的脱硫性能 (22.5%).在静态吸附实验中, Ag-CeOx/TiO2-SiO2对中国国II柴油 (硫含量952.9mg/kg) 的吸附硫容可达5.38mg/g, 在剂油比为1:10时可将中国国IV柴油 (硫含量39.0mg/kg) 中的硫含量降至10mg/kg以下, 达到中国国V柴油的标准.
  • Figure  1  N2-physisorption curves of different adsorbents and supports

    a: SiO2; b: TiO2-SiO2; c: Ag-TiO2-SiO2; d: CeOx/TiO2-SiO2; e: Ag-CeOx/TiO2-SiO2

    Figure  2  XPS Ti 2p spectra of CeOx/TiO2-SiO2 and Ag-CeOx/TiO2-SiO2

    a: CeOx/TiO2-SiO2; b: Ag-CeOx/TiO2-SiO2

    Figure  3  XPS Ce 3d spectra of CeOx/TiO2-SiO2 and Ag-CeOx/TiO2-SiO2

    a: CeOx/TiO2-SiO2; b: Ag-CeOx/TiO2-SiO2

    Figure  4  XRD patterns of different adsorbents

    a: SiO2; b: TiO2-SiO2; c: Ag-TiO2-SiO2; d: CeOx/TiO2-SiO2; e: Ag-CeOx/TiO2-SiO2

    Figure  5  TEM images of Ag-TiO2-SiO2

    (a): bright field image; (b): HADDF-STEM image; (c), (d): HRTEM image

    Figure  6  TEM images of Ag-CeOx/TiO2-SiO2

    (a): BF image; (b): HADDF-STEM image; (c), (d): HRTEM image; (d) is the enlargement of the part enclosed by dotted lines in (c)

    Figure  7  Relative sulfur concentration (C/C0) varies with adsorption time 3 g adsorbent was mixed with 90 mL CN-IV diesel fuel in a flask at 333 K and atmospheric pressure under vigorous stirring

    ●: Ag-TiO2-SiO2; ■: Ag-CeOx/TiO2-SiO2

    Figure  8  Breakthrough curves of adsorbents obtained with CN-IV diesel at 298 K, atmospheric pressure and different LHSV

    ■: Ag-CeOx/TiO2-SiO2 LHSV=0.3 h-1;
    ●: Ag-CeOx/TiO2-SiO2 LHSV=0.6 h-1;
    ▲: Ag-CeOx/TiO2-SiO2 LHSV=0.9 h-1;
    ▼: Ag-TiO2-SiO2 LHSV=0.3 h-1;
    ◆: Ag-TiO2-SiO2 LHSV=0.6 h-1;
    ◀: Ag-TiO2-SiO2 LHSV=0.9 h-1

    Figure  9  Contrasting the adsorption rate curves of CN-IV diesel and model diesel 3 g Ag-CeOx/TiO2-SiO2 was mixed with 90 mL diesel fuel in a flask at 333 K and atmospheric pressure under vigorous stirring

    ●: CN-IV diesel; ■: model diesel

    Figure  10  Regeneration experiment of Ag-CeOx/TiO2-SiO2 obtained with CN-IV diesel at 298 K, atmospheric pressure and 0.3 h-1 of LHSV

    ■: fresh;
    ●: 1st recycling;
    ▲: 2nd recycling;
    ▼: 3rd recycling;
    ◆: 4th recycling;
    ◀: 5th recycling

    Table  1  Porous parameters of different adsorbents and supports

    Sample IDSurface area A/(m2·g-1)Pore volume v/(cm3·g-1)Pore diameter d/nm
    SiO2341.31.0011.7
    TiO2-SiO2335.90.9110.8
    Ag-TiO2-SiO2297.20.8311.1
    CeOx/TiO2-SiO2318.00.8210.3
    Ag-CeOx/TiO2-SiO2278.80.7610.8
    下载: 导出CSV

    Table  3  Static equilibrium test results of different adsorbents and supports

    AdsorbentA/Fb /(g·mL-1)DieselCea, b /(mg·kg-1)ηa, b /%CSa, b /(mg·g-1)
    SiO21:30CN-IV30.621.60.21
    TiO2-SiO21:30CN-IV26.532.00.31
    CeOx/TiO2-SiO21:30CN-IV25.634.40.35
    Ag-SiO21:30CN-IV27.629.30.29
    Ag-TiO2-SiO21:30CN-IV23.140.80.40
    Ag-CeOx/TiO2-SiO21:30CN-IV19.749.50.49
    Ag-CeOx/TiO2-SiO21:20CN-IV14.862.00.41
    Ag-CeOx/TiO2-SiO21:10CN-IV8.179.10.26
    Ag-CeOx/TiO2-SiO21:30CN-III166.643.03.16
    Ag-CeOx/TiO2-SiO21:30CN-II738.522.45.38
    Ag-TiO2-Al2O31:30CN-IV29.325.00.25
    a all the desulfurization were processed at 333 K and atmospheric pressure, the adsorbents were mixed with the diesels under mechanical shaking for 48 h, respectively;
    b A/F represent adsorbent to diesel fuel ratios; Ce represent the equilibrium concentration; η is the desulphurization efficiencies; CS represent the sulfur adsorption capacity
    下载: 导出CSV

    Table  2  XPS binding energy of O 1s, Si 2p and Ce 3d peaks

    LevelsPeakBinding energy EB/eV
    referenceCeOx/TiO2-SiO2Ag-CeOx/TiO2-SiO2
    Ce 3d5/2av0880.6--
    v882.6883.6883.8
    v1885.45--
    v2888.85887.2887.5
    v3898.4899.9900.5
    Ce 3d3/2au0898.9--
    u901.05902902.3
    u1904.05--
    u2907.45905.8906.1
    u3916.7918.2918.8
    Si 2pb103.7102.9103.0
    O 1sb533.2532.9533.1
    a: the reference binding energy of the ten Ce 3d peaks were from reference[33];
    b: the reference binding energy of O 1s and Si 2p in silica gel were from reference[34]
    下载: 导出CSV
  • [1] WU L, XIAO J, WU Y, XIAN S, MIAO G, WANG H, LI Z. A combined experimental/computational study on the adsorption of organosulfur compounds over metal-organic frameworks from fuels[J]. Langmuir, 2014, 30(4):1080-1088. doi: 10.1021/la404540j
    [2] PALOMINO J M, TRAN D T, HAUSER J L, DONG H, OLIVER S R. Mesoporous silica nanoparticles for high capacity adsorptive desulfurization[J]. J Mater Chem, 2014, 2(36):14890-14895. doi: 10.1039/C4TA02570A
    [3] XU X, ZHANG S, LI P, SHEN Y. Adsorptive desulfurization of liquid Jet-A fuel at ambient conditions with an improved adsorbent for on-board fuel treatment for SOFC applications[J]. Fuel Process Technol, 2014, 124:140-146. doi: 10.1016/j.fuproc.2014.03.001
    [4] XIAO J, WANG X, CHEN Y, FUJⅡ M, SONG C. Ultra-deep adsorptive desulfurization of light-irradiated diesel fuel over supported TiO2-CeO2 adsorbents[J]. Ind Eng Chem Res, 2013, 52(45):15746-15755. doi: 10.1021/ie402724q
    [5] HUSSAIN A S, TATARCHUK B J. Adsorptive desulfurization of jet and diesel fuels using Ag/TiOx-Al2O3 and Ag/TiOx-SiO2 adsorbents[J]. Fuel, 2013, 107:465-473. doi: 10.1016/j.fuel.2012.11.030
    [6] QIN Y, MO Z, YU W, DONG S, DUAN L, GAO X, SONG L. Adsorption behaviors of thiophene, benzene, and cyclohexene on FAU zeolites:Comparison of CeY obtained by liquid-, and solid-state ion exchange[J]. Appl Surf Sci, 2014, 292:5-15. doi: 10.1016/j.apsusc.2013.11.036
    [7] KHAN N A, HASAN Z, JHUNG S H. Ionic liquids supported on metal-organic frameworks:Remarkable adsorbents for adsorptive desulfurization[J]. Chem Eur J, 2014, 20(2):376-380. doi: 10.1002/chem.v20.2
    [8] HUSSAIN A S, TATARCHUK B J. Mechanism of hydrocarbon fuel desulfurization using Ag/TiO2-Al2O3 adsorbent[J]. Fuel Process Technol, 2014, 126:233-242. doi: 10.1016/j.fuproc.2014.05.006
    [9] HUSSAIN A S, MCKEE M L, HEINZEL J M, SUN X, TATARCHUK B J. Density functional theory study of organosulfur selective adsorption on Ag-TiO2 adsorbents[J]. J Phys Chem C, 2014, 118(27):14938-14947. doi: 10.1021/jp503097y
    [10] LIU B, ZHU Y, LIU S, MAO J. Adsorption equilibrium of thiophenic sulfur compounds on the Cu-BTC metal-organic framework[J]. J Chem Eng Data, 2012, 57(4):1326-1330. doi: 10.1021/je300130s
    [11] YANG R T, HERNANDEZ-MALDONADO A J, YANG F H. Desulfurization of transportation fuels with zeolites under ambient conditions[J]. Science, 2003, 301(5629):79-81. doi: 10.1126/science.1085088
    [12] HE G, SUN L, SONG X, LIU X, YIN Y, WANG Y. Adjusting host properties to promote cuprous chloride dispersion and adsorptive desulfurization sites formation on SBA-15[J]. Energy Fuels, 2011, 25(8):3506-3513. doi: 10.1021/ef200723m
    [13] XU X, ZHANG S, LI P, SHEN Y. Equilibrium and kinetics of Jet-A fuel desulfurization by selective adsorption at room temperatures[J]. Fuel, 2013, 111:172-179. doi: 10.1016/j.fuel.2013.04.068
    [14] MA X, SPRAGUE M, SONG C. Deep desulfurization of gasoline by selective adsorption over nickel-based adsorbent for fuel cell applications[J]. Ind Eng Chem Res, 2005, 44(15):5768-5775. doi: 10.1021/ie0492810
    [15] VELU S, MA X, SONG C, NAMAZIAN M, SETHURAMAN S, VENKATARAMAN G. Desulfurization of JP-8 jet fuel by selective adsorption over a Ni-based adsorbent for micro solid oxide fuel cells[J]. Energy Fuels, 2005, 19(3):1116-1125. doi: 10.1021/ef049800b
    [16] SHEN Y, XU X, LI P. A novel potential adsorbent for ultra deep desulfurization of jet fuels at room temperature[J]. RSC Adv, 2012, 2(15):6155-6160. doi: 10.1039/c2ra20224g
    [17] TRIANTAFYLLIDIS K S, DELIYANNI E A. Desulfurization of diesel fuels:Adsorption of 4, 6-DMDBT on different origin and surface chemistry nanoporous activated carbons[J]. Chem Eng J, 2014, 236:406-414. doi: 10.1016/j.cej.2013.09.099
    [18] WANG L, YANG R T, SUN C L. Graphene and other carbon sorbents for selective adsorption of thiophene from liquid fuel[J]. AlChE J, 2013, 59(1):29-32. doi: 10.1002/aic.v59.1
    [19] BALTZOPOULOU P, KALLIS K X, KARAGIANNAKIS G, KONSTANDOPOULOS A G. Diesel fuel desulfurization via adsorption with the aid of activated carbon:Laboratory-and pilot-scale studies[J]. Energy Fuels, 2015, 29(9):5640-5648. doi: 10.1021/acs.energyfuels.5b01133
    [20] XU X, ZHANG S, LI P, SHEN Y. Desulfurization of Jet-A fuel in a fixed-bed reactor at room temperature and ambient pressure using a novel selective adsorbent[J]. Fuel, 2014, 117:499-508. doi: 10.1016/j.fuel.2013.09.074
    [21] GUO J, JANIK M J, SONG C. Density functional theory study on the role of ceria addition in TixCe1-xO2 adsorbents for thiophene adsorption[J]. J Phys Chem C, 2012, 116(5):3457-3466. doi: 10.1021/jp2063996
    [22] TIAN F, SHEN Q, FU Z, WU Y, JIA C. Enhanced adsorption desulfurization performance over hierarchically structured zeolite Y[J]. Fuel Process Technol, 2014, 128:176-182. doi: 10.1016/j.fuproc.2014.07.018
    [23] WANG Y, YANG R T, HEINZEL J M. Desulfurization of jet fuel byπ-complexation adsorption with metal halides supported on MCM-41 and SBA-15 mesoporous materials[J]. Chem Eng Sci, 2008, 63(2):356-365. doi: 10.1016/j.ces.2007.09.002
    [24] HERNANDEZ-MALDONADO A J, YANG R T. Desulfurization of commercial liquid fuels by selective adsorption viaπ-complexation with Cu (I)-Y zeolite[J]. Ind Eng Chem Res, 2003, 42(13):3103-3110. doi: 10.1021/ie0301132
    [25] PERALTA D, CHAPLAIS G, SIMON-MASSERON A, BARTHELET K, PIRNGRUBER G D. Metal-organic framework materials for desulfurization by adsorption[J]. Energy Fuels, 2012, 26(8):4953-4960. doi: 10.1021/ef300762z
    [26] LIU X, WANG J, LI Q, JIANG S, ZHANG T, JI S. Synthesis of rare earth metal-organic frameworks (Ln-MOFs) and their properties of adsorption desulfurization[J]. J Rare Earths, 2014, 32(2):189-194. doi: 10.1016/S1002-0721(14)60050-8
    [27] NAIR S, TATARCHUK B J. Supported silver adsorbents for selective removal of sulfur species from hydrocarbon fuels[J]. Fuel, 2010, 89(11):3218-3225. doi: 10.1016/j.fuel.2010.05.006
    [28] WATANABE S, MA X, SONG C. Characterization of structural and surface properties of nanocrystalline TiO2-CeO2 mixed oxides by XRD, XPS, TPR, and TPD[J]. J Phys Chem C, 2009, 113(32):14249-14257. doi: 10.1021/jp8110309
    [29] SCIRE S, MINICO S, CRISAFULLI C, SATRIANO C, PISTONE A. Catalytic combustion of volatile organic compounds on gold/cerium oxide catalysts[J]. Appl Catal B:Environ, 2003, 40(1):43-49. doi: 10.1016/S0926-3373(02)00127-3
    [30] ZHANG Y, ANDERSSON S, MUHAMMED M. Nanophase catalytic oxides:I. Synthesis of doped cerium oxides as oxygen storage promoters[J]. Appl Catal B:Environ, 1995, 6(4):325-337. doi: 10.1016/0926-3373(95)00041-0
    [31] XIAO J, WANG X, FUJⅡ M, YANG Q, SONG C. A novel approach for ultra-deep adsorptive desulfurization of diesel fuel over TiO2-CeO2/MCM-48 under ambient conditions[J]. AlChE J, 2013, 59(5):1441-1445. doi: 10.1002/aic.14085
    [32] GONBEAU D, GUIMON C, PFISTER-GUILLOUZO G, LEVASSEUR A, MEUNIER G, DORMOY R. XPS study of thin films of titanium oxysulfides[J]. Surf Sci, 1991, 254(1):81-89.
    [33] ROMEO M, BAK K, FALLAH J E, NORMAND F L, HILAIRE L. XPS study of the reduction of cerium dioxide[J]. Surf Interface Anal, 1993, 20(6):508-512. doi: 10.1002/(ISSN)1096-9918
    [34] GROSS T, RAMM M, SONNTAG H, UNGER W, WEIJERS H M, ADEM E H. An XPS analysis of different SiO2 modifications employing a C 1s as well as an Au 4f7/2 static charge reference[J]. Surf Interface Anal, 1992, 18(1):59-64. doi: 10.1002/(ISSN)1096-9918
    [35] NAGPURE I, PITALE S S, TSHABALALA K, KUMAR V, NTWAEABORWA O, TERBLANS J, SWART H. Luminescence response and CL degradation of combustion synthesized spherical SiO2:Ce nanophosphor[J]. Mater Res Bull, 2011, 46(12):2359-2366. doi: 10.1016/j.materresbull.2011.08.051
    [36] LARACHI F, PIERRE J, ADNOT A, BERNIS A. Ce 3d XPS study of composite CexMn1-xO2-y wet oxidation catalysts[J]. Appl Surf Sci, 2002, 195(1):236-250.
    [37] SAMOKHVALOV A, NAIR S, DUIN E C, TATARCHUK B J. Surface characterization of Ag/titania adsorbents[J]. Appl Surf Sci, 2010, 256(11):3647-3652. doi: 10.1016/j.apsusc.2010.01.002
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  71
  • HTML全文浏览量:  24
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-08
  • 修回日期:  2016-05-20
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-08-10

目录

    /

    返回文章
    返回