留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

烯烃对噻吩在介孔分子筛Al-MCM-41活性位物种上吸附脱硫机制的影响

郭忠森 祖运 惠宇 秦玉才 王焕 张晓彤 宋丽娟

郭忠森, 祖运, 惠宇, 秦玉才, 王焕, 张晓彤, 宋丽娟. 烯烃对噻吩在介孔分子筛Al-MCM-41活性位物种上吸附脱硫机制的影响[J]. 燃料化学学报(中英文), 2019, 47(4): 474-483.
引用本文: 郭忠森, 祖运, 惠宇, 秦玉才, 王焕, 张晓彤, 宋丽娟. 烯烃对噻吩在介孔分子筛Al-MCM-41活性位物种上吸附脱硫机制的影响[J]. 燃料化学学报(中英文), 2019, 47(4): 474-483.
GUO Zhong-sen, ZU Yun, HUI Yu, QIN Yu-cai, WANG Huan, ZHANG Xiao-tong, SONG Li-juan. Influence of olefin on the mechanism of thiophene adsorption on the active species of Al-MCM-41 mesoporous zeolites[J]. Journal of Fuel Chemistry and Technology, 2019, 47(4): 474-483.
Citation: GUO Zhong-sen, ZU Yun, HUI Yu, QIN Yu-cai, WANG Huan, ZHANG Xiao-tong, SONG Li-juan. Influence of olefin on the mechanism of thiophene adsorption on the active species of Al-MCM-41 mesoporous zeolites[J]. Journal of Fuel Chemistry and Technology, 2019, 47(4): 474-483.

烯烃对噻吩在介孔分子筛Al-MCM-41活性位物种上吸附脱硫机制的影响

基金项目: 

国家自然科学基金 U1662135

国家自然科学基金 21376114

辽宁省博士科研启动基金 201601318

详细信息
  • 中图分类号: O643

Influence of olefin on the mechanism of thiophene adsorption on the active species of Al-MCM-41 mesoporous zeolites

Funds: 

the National Natural Science Foundation of China U1662135

the National Natural Science Foundation of China 21376114

Liaoning Province, PhD Research Initiated Fund Project 201601318

More Information
    Corresponding author: SONG Li-juan, Tel: 13941350056, E-mail: lsong56@263.net
  • 摘要: 采用后嫁接法制备了不同铝负载量的Al-MCM-41分子筛。运用XRD、N2吸附-脱附、NH3-TPD、Py-FTIR等方法对分子筛进行物性表征,利用固定床评价其对噻吩的吸附性能。通过将分子筛吸附噻吩能力与分子筛的酸性质及织构性质进行关联,考察烯烃存在对Al-MCM-41活性位物种吸附脱硫机制的影响。结果表明,铝物种的引入即产生了B酸中心,也同时产生了两种类型的L酸中心L1和L2。引入低含量铝物种利于形成B酸中心和L1型酸中心,引入高含量铝物种利于形成L2型酸中心。其中,L2型酸中心对噻吩的吸附效果最佳。烯烃和噻吩在B酸中心发生竞争吸附和催化转化反应,且催化转化反应占主导地位。L2酸中心的存在促进了B酸中心上的催化转化反应,其所生成的大分子硫化物取代噻吩吸附在分子筛酸活性中心上提高了Al-MCM-41分子筛的饱和吸附硫容量。
  • 图  1  不同铝含量Al-MCM-41样品的XRD谱图

    Figure  1  XRD patterns of the Al-MCM-41 samples

    (a): low-angle; (b): wide-angle

    图  2  不同铝含量Al-MCM-41样品的N2吸附-脱附等温线和孔径分布

    Figure  2  Nitrogen adsorption-desorption isotherms and BJH pore size distributions of the Al-MCM-41 samples

    ◆: Al-MCM-41(∞) adsorption; ◇: Al-MCM-41(∞) desorption; ▼: Al-MCM-41(60) adsorption; ▽: Al-MCM-41(60)desorption; ★: Al-MCM-41(30)adsorption; ☆: Al-MCM-41(30)desorption; ●: Al-MCM-41(10) adsorption; ○: Al-MCM-41(10)desorption

    图  3  不同铝含量Al-MCM-41样品的NH3-TPD谱图和高斯拟合曲线

    Figure  3  NH3-TPD patterns and Gaussian fitting profiles of the Al-MCM-41 samples

    ——: actual curve; ----: fit curves

    图  4  不同铝含量Al-MCM-41分子筛的Py-FTIR谱图

    Figure  4  Py-FTIR characterization of the Al-MCM-41 samples

    (a): 150 ℃ of desorption temperature; (b): 400 ℃ of desorption temperature a: Al-MCM-41(∞); b: Al-MCM-41(60); c: Al-MCM-41(30); d: Al-MCM-41(10)

    图  5  Al-MCM-41样品中不同形式的酸活性中心

    Figure  5  Type of acid active centers in Al-MCM-41 samples

    BA: Br∅nsted acid site; L1A and L2A: type 1 and type 2 Lewis acid site

    图  6  不同铝含量Al-MCM-41样品对MO-1的动态吸附曲线(a)、萃取液的GC-SCD谱图(b)、穿透吸附硫容量(c)及饱和吸附硫容量(d)

    Figure  6  Breakthrough curves of MO-1 model oil on the Al-MCM-41 samples (a), the GC-SCD chromatograms of the extraction solution samples (b), breakthrough (c) and saturation (d) adsorption capacity of the Al-MCM-41 samples

    图  7  不同铝含量Al-MCM-41样品对MO-2模拟油的动态吸附曲线(a)及吸附硫容量(b)

    Figure  7  Breakthrough curves (a) and sulfur adsorption capacity (b) of the MO-2 model oil on the Al-MCM-41 samples

    图  8  MO-2模拟油吸附实验中不同时间段所取油样的产物分布图

    Figure  8  Products distribution map of oil samples from the MO-2 adsorption tests

    (a): Al-MCM-41(∞); (b): Al-MCM-41(60); (c): Al-MCM-41(30); (d): Al-MCM-41(10)

    图  9  噻吩同烯烃可能的催化转化反应机理示意图

    Figure  9  Possible reaction mechanism of 1-hexene and thiophene on the acid active site

    图  10  不同铝含量Al-MCM-41样品对MO-2模拟油动态吸附实验中吸附饱和的样品经萃取后萃取液的GC-SCD谱图(a)及不同硫化物产物分布图(b)

    Figure  10  GC-SCD chromatograms (a) and different sulfides distribution map (b) of extraction solutions by Al-MCM-41 sample

    a: Al-MCM-41(∞); b: Al-MCM-41(60); c: Al-MCM-41(30); d: Al-MCM-41(10)

    表  1  不同硅铝比Al-MCM-41分子筛的结构参数

    Table  1  Textural parameters of the different Si/Al ratio Al-MCM-41 samples

    SampleABET
    /(m2·g-1)
    Amic
    /(m2·g-1)
    Ameso
    /(m2·g-1)
    vp
    /(cm3·g-1)
    Average pore
    diameter d/nm
    a0/nmw/%
    (Al)
    Al-MCM-41(∞)1069.312.310571.02.793.22-
    Al-MCM-41(60)1067.412.51054.90.92.823.260.70
    Al-MCM-41(30)1063.112.81050.31.02.833.271.41
    Al-MCM-41(10)10469.61036.40.852.703.123.99
    w/% (Al):actual Al content in samples which is tested by ICP-MS
    下载: 导出CSV

    表  2  不同铝含量Al-MCM-41样品中不同活性中心相对比例

    Table  2  Proportion of active sites in Al-MCM-41 samples

    SampleB/(B+L1+L2)L1/(B+L1+L2)L2/(B+L1+L2)
    Al-MCM-41(∞)(150 ℃)0.410.530.06
    Al-MCM-41(60)(150 ℃)0.380.620
    Al-MCM-41(30)(150 ℃)0.530.470
    Al-MCM-41(10)(150 ℃)0.160.270.57
    Al-MCM-41(∞)(400 ℃)0.260.740
    Al-MCM-41(60)(400 ℃)0.270.730
    Al-MCM-41(30)(400 ℃)0.260.740
    Al-MCM-41(10)(400 ℃)0.160.300.54
    note: proportion of active sites are calculated from the peak area of Py-FTIR spectra by emeis’s method[25]
    下载: 导出CSV
  • [1] 毛艳红, 刘冬梅, 王海彦, 王钰佳.碱酸改性ZSM-5分子筛催化剂的噻吩烷基化反应性能研究[J].燃料化学学报, 2017, 45(12):1456-1466. doi: 10.3969/j.issn.0253-2409.2017.12.007

    MAO Yan-hong, LIU Dong-mei, WANG Hai-yan, WANG Yu-jia. Study on the performance of alkali acid modified ZSM-5 catalysts for thiophene alkylation reaction[J]. J Fuel Chem Technol, 2017, 45(12):1456-1466. doi: 10.3969/j.issn.0253-2409.2017.12.007
    [2] DEHGHAN R, ANBIA M. Zeolites for adsorptive desulfurization from fuels:A review[J]. Fuel Process Technol, 2017, 167:99-116. doi: 10.1016/j.fuproc.2017.06.015
    [3] SONG C S. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel[J]. Catal Today, 2003, 86(1):211-263. doi: 10.1016-S0920-5861(03)00412-7/
    [4] ZHOU A N, MA X L, SONG C S. Effects of oxidative modification of carbon surface on the adsorption of sulfur compounds in diesel fuel[J]. Appl Catal B:Environ, 2009, 87:190-199. doi: 10.1016/j.apcatb.2008.09.024
    [5] 王洪国, 姜恒, 徐静, 孙兆林, 张晓彤, 朱赫礼, 宋丽娟.苯和1-辛烯对Ce(Ⅳ)Y分子筛选择性吸附脱硫的影响[J].物理化学学报, 2008, 24(9):1714-1718. doi: 10.3866/PKU.WHXB20080933

    WANG Hong-guo, JIANG Heng, XU Jing, SUN Zhao-lin, ZHANG Xiao-tong, ZHU He-li, SONG Li-juan. Effects of benzene and 1-octene on desulfurization by selective adsorption with Ce(Ⅳ)Y[J]. Acta Phys-Chim Sin, 2008, 24(9):1714-1718. doi: 10.3866/PKU.WHXB20080933
    [6] DUAN L H, GAO X H, MENG X H, ZHANG H T, WANG Q, QIN Y C, ZHANG X T, SONG L J. Adsorption, co-adsorption, and reactions of sulfur compounds, aromatics, olefins over Ce-exchanged Y Zeolite[J]. J Phys Chem C, 2012, 116(49):25758-25756. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=798e75c99c165438968a1b98cd89a66e
    [7] 宋丽娟, 胡月婷, 秦玉才, 于文广, 张晓彤. NiY分子筛表面酸性影响其选择性吸附脱硫性能的机理研究[J].燃料化学学报, 2016, 44(9):1082-1088. doi: 10.3969/j.issn.0253-2409.2016.09.008

    SONG Li-juan, HU Yue-ting, QIN Yu-cai, YU Wen-guang, ZHANG Xiao-tong. Mechanism of effects of surface acidity on performance of adsorption desulfurization of NiY zeolites[J]. J Fuel Chem Technol, 2016, 44(9):1082-1088. doi: 10.3969/j.issn.0253-2409.2016.09.008
    [8] ZU Y, QIN Y C, GAO X H, LIU H H, ZHANG X T, ZHANG J D, SONG L J. Insight into the correlation between the adsorption-transformation behaviors of methylthiophenes and the active sites of zeolites Y[J]. Appl Catal B:Environ, 2017, 203:96-107. doi: 10.1016/j.apcatb.2016.10.008
    [9] 王旺银, 潘明雪, 秦玉才, 王凌涛, 宋丽娟. Cu(Ⅰ)Y分子筛表面酸性对其吸附脱硫性能的影响[J].物理化学学报, 2011, 27(5):1176-1180. doi: 10.3866/PKU.WHXB20110442

    WANG Wang-yin, PAN Ming-xue, QIN Yu-cai, WANG Ling-tao, SONG Li-juan. Effects of surface acidity on the adsorption desulfurization of Cu(Ⅰ)Y zeolites[J]. Acta Phys-Chim Sin, 2011, 27(5):1176-1180. doi: 10.3866/PKU.WHXB20110442
    [10] SCHALLMOSER S, HALLER G L, SANCHEZ-SANCHEZ M, LERCHER J A. Role of spatial constraints of Brønsted acid sites for adsorption and surface reactions of linear pentenes[J]. J Am Chem Soc, 2017, 139(25):8646-8652. doi: 10.1021/jacs.7b03690
    [11] RICHARDEAU D, JOLY G, CANAFF C, MAGNOUX P, GUISNET M, THOMAS M, NICOLAOS A. Adsorption and reaction over HFAU zeolites of thiophene in liquid hydrocarbon solutions[J]. Appl Catal A:Gen, 2004, 263(1):49-61. doi: 10.1016/j.apcata.2003.11.039
    [12] SHI Y C, ZHANG W, ZHANG H X, TIAN F P, JIA C Y, CHEN Y Y. Effect of cyclohexene on thiophene adsorption over NaY and LaNaY zeolites[J]. Fuel Process Technol, 2013, 110:24-32. doi: 10.1016/j.fuproc.2013.01.008
    [13] SELVARAJ M, LEE T G. Room temperature synthesis of diphenylmethane over novel mesoporous Lewis acid catalysts[J]. J Mol Catal:A Chem, 2006, 243(2):176-182 doi: 10.1016/j.molcata.2005.08.020
    [14] WANG Z C, JIANG Y J, LAFON O, TREBOSC J, KIM K D, STAMPF C, BAIKER A, AMOUREUS J-P, HUANG J. Brønsted acid sites based on penta-coordinated aluminum species[J]. Nat Commun, 2016, 7:13820. doi: 10.1038/ncomms13820
    [15] HU W, LUO Q, SU Y C, CHEN L, YUE Y, YE C H, DENG F. Acid sites in mesoporous Al-SBA-15 material as revealed by solid-state NMR spectroscopy[J]. Microporous Mesoporous Mater, 2006, 92(1):22-30.
    [16] GURINOV A A, ROZHKOVA Y A, ZUKALA, CEJKA J, SHENDEROVICH I G. Mutable lewis and Brønsted acidity of aluminated SBA-15 as revealed by NMR of adsorbed pyridine-15N[J]. Langmuir, 2011, 27(19):12115. doi: 10.1021/la2017566
    [17] TANG K, SONG L J, DUAN L H, LI X Q, GUI J Z, SUN Z L. Deep desulfurization by selective adsorption on a heteroatoms zeolite prepared by secondary synthesis[J]. Fuel Process Technol, 2008, 89(1):1-6. doi: 10.1016-j.fuproc.2007.06.002/
    [18] 秦玉才, 高雄厚, 裴婷婷, 郑兰歌, 王琳, 莫周胜, 宋丽娟.噻吩在稀土离子改性Y型分子筛上吸附与催化转化研究[J].燃料化学学报, 2013, 41(7):889-896. doi: 10.3969/j.issn.0253-2409.2013.07.017

    QIN Yu-cai, GAO Xiong-hou, PEI Ting-ting, ZHENG Lan-ge, WANG Lin, MO Zhou-sheng, SONG Li-juan. Adsorption and catalytic conversion of thiophene on Y-type zeolites modified with rare-earth metal ions[J]. J Fuel Chem Technol, 2013, 41(7):889-896. doi: 10.3969/j.issn.0253-2409.2013.07.017
    [19] 张畅, 秦玉才, 高雄厚, 张海涛, 莫周胜, 初春雨, 张晓彤, 宋丽娟. Ce改性对Y型分子筛酸性及其催化转化性能的调变机制[J].物理化学学报, 2015, 31(2):344-352. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201502021

    ZHANG Chang, QIN Yu-cai, GAO Xiong-hou, ZHANG Hai-tao, MO Zhou-sheng, CHU Chun-yu, ZHANG Xiao-tong, SONG Li-juan. Modulation mechanisms of the acidity and catalytic properties of Y zeolites modified by cerium cations[J]. Acta Phys-Chim Sin, 2015, 31(2):344-352. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201502021
    [20] 祖运, 秦玉才, 高雄厚, 莫周胜, 张磊, 张晓彤, 宋丽娟.催化裂化条件下噻吩与改性Y分子筛的作用机制[J].燃料化学学报, 2015, 43(7):862-869. doi: 10.3969/j.issn.0253-2409.2015.07.012

    ZU Yun, QIN Yu-cai, GAO Xiong-hou, MO Zhou-sheng, ZHANG Lei, ZHANG Xiao-tong, SONG Li-juan. Mechanisms of thiophene conversion over the modified Y zeolites under catalytic cracking conditions[J]. J Fuel Chem Technol, 2015, 43(7):862-869. doi: 10.3969/j.issn.0253-2409.2015.07.012
    [21] 丁润东, 祖运, 周传行, 王焕, 莫周胜, 秦玉才, 孙兆林, 宋丽娟. CuNaY分子筛的有效吸附位与其脱硫性能的关联性研究[J].燃料化学学报, 2018, 46(4):451-458. doi: 10.3969/j.issn.0253-2409.2018.04.010

    DING Run-dong, ZU Yun, ZHOU Chuan-hang, WANG Huan, MO Zhou-sheng, QIN Yu-cai, SUN Zhao-lin, SONG Li-juan. Insight into the correlation between effective adsorption sites and adsorption desulfurization performance of CuNaY zeolite[J]. J Fuel Chem Technol, 2018, 46(4):451-458. doi: 10.3969/j.issn.0253-2409.2018.04.010
    [22] DUBÉ D, ROYR S, ON D T, BELAND F, KALIAGUINE S. Aluminum chloride grafted mesoporous molecular sieves as alkylation catalysts[J]. Microporous Mesoporous Mater, 2005, 79:137-144. doi: 10.1016/j.micromeso.2004.11.002
    [23] GALLO J M R, BISIO C, GATTI G, MARCHESE L, PASTORE H O. Physicochemical characterization and surface acid properties of mesoporous[Al]-SBA-15 obtained by direct synthesis[J]. Langmuir, 2010, 26(8):5791-5800. doi: 10.1021/la903661q
    [24] MARQUES J P, GENER I, AYRAULT P, BORDADO J C, LOPES J M, RIBEIRO F R, GUISNET M. Infrared spectroscopic study of the acid properties of dealuminated BEA zeolites[J]. Microporous Mesoporous Mater, 2003, 60:251-262. doi: 10.1016/S1387-1811(03)00382-2
    [25] EMIES C A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J]. J Catal, 1993, 141:347-354. doi: 10.1006/jcat.1993.1145
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  85
  • HTML全文浏览量:  35
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-05
  • 修回日期:  2019-01-27
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-04-10

目录

    /

    返回文章
    返回