留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物质和废塑料混合热解协同特性研究

毛俏婷 胡俊豪 赵雨佳 闫舒航 杨海平 陈汉平

毛俏婷, 胡俊豪, 赵雨佳, 闫舒航, 杨海平, 陈汉平. 生物质和废塑料混合热解协同特性研究[J]. 燃料化学学报(中英文), 2020, 48(3): 286-292.
引用本文: 毛俏婷, 胡俊豪, 赵雨佳, 闫舒航, 杨海平, 陈汉平. 生物质和废塑料混合热解协同特性研究[J]. 燃料化学学报(中英文), 2020, 48(3): 286-292.
MAO Qiao-ting, HU Jun-hao, ZHAO Yu-jia, YAN Shu-hang, YANG Hai-ping, CHEN Han-ping. Synergistic effect during biomass and waste plastics co-pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2020, 48(3): 286-292.
Citation: MAO Qiao-ting, HU Jun-hao, ZHAO Yu-jia, YAN Shu-hang, YANG Hai-ping, CHEN Han-ping. Synergistic effect during biomass and waste plastics co-pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2020, 48(3): 286-292.

生物质和废塑料混合热解协同特性研究

基金项目: 

国家重点研发计划 2018YFB1501403

国家自然科学基金 51906082

中国博士后科学基金 2019M662617

详细信息
  • 中图分类号: TK6

Synergistic effect during biomass and waste plastics co-pyrolysis

Funds: 

The project was supported by the National Key Research and Development Program of China 2018YFB1501403

the National Natural Science Foundation of China 51906082

the China Postdoctoral Science Foundation 2019M662617

More Information
  • 摘要: 选取聚丙烯(PP)和竹屑作为废塑料与生物质的典型代表,在热重分析仪和固定床台架上研究了塑料掺混比例对混合热解失重特性、动力学机理、产物分布行为等特性的影响,并分析了混合热解时生物质和废塑料间的协同作用机制。结果表明,随着塑料掺混比例的增加,混合热解终止温度由501℃降低至471℃,主要热解温度区间缩短;混合热解所需活化能呈现先减小后增大的趋势,在塑料掺混比例为0.25时取得最小值。通过对比实验数据和理论数据发现,生物质与废塑料混合热解具有很强的协同作用:该协同作用降低了生物质反应所需能量,增加了废塑料反应所需能量,降低了混合热解过程的总活化能;此外,协同作用促进大分子挥发分转化为小分子气体,促进芳烃、烷烃等烃类生成,抑制CO2、苯酚、羧酸、呋喃和酮类等含氧物质生成。
  • 图  1  生物质、废塑料混合热解实验装置示意图

    Figure  1  Schematic diagram of the co-pyrolysis process of biomass and waste plastics

    图  2  生物质、废塑料混合热解失重速率曲线

    Figure  2  DTG curves of biomass and waste plastics co-pyrolysis

    PP0.25 means the plastic ratio is 25%; DTGcal = (1-x)DTGexp1 + xDTGexp2, while x is the plastic ratio, DTGexp1 and DTGexp2 are the weight loss rate of bamboo and waste plastic

    图  3  混合热解三态产率(a)及气体组成(b)

    Figure  3  Products yield (a) and gas composition of co-pyrolysis (b)

    图  4  混合热解液体产物含氧组分(a)与烃类组分(b)GC-MS峰面积分布

    Figure  4  GC-MS peak area of the co-pyrolysis liquid product components with oxygen (a) and with hydrocarbon (b)

    图  5  混合热解焦炭结构特性(a)有机官能团分布和(b)碳骨架晶相结构

    Figure  5  Organic functional group distribution (a) and the framework phase structure of co-pyrolysis char (b)

    图  6  混合热解焦炭的SEM照片(×5000)

    Figure  6  SEM images of co-pyrolysis char (magnification is 5000 times)

    表  1  样品的工业分析和元素分析

    Table  1  Proximate and ultimate analysis of samples

    Sample Proximate analysis wd/% Ultimate analysis wd/%
    V A FC C H Oa N S
    Bamboo 81.44 0.73 17.83 47.28 6.04 46.39 0.17 0.12
    PP 99.88 0.07 0.05 85.18 13.74 0.91 0.00 0.17
    a: by difference
    下载: 导出CSV

    表  2  生物质灰成分分析

    Table  2  Inorganic composition analysis of biomass

    Sample Mass fraction wad/%
    Mg Al Si P S K Ca Ti Mn Fe Zn
    Bamboo 10.60 1.85 5.91 7.29 9.16 50.12 9.65 0.17 3.97 0.81 0.47
    下载: 导出CSV

    表  3  生物质、废塑料热解/混合热解特性参数表

    Table  3  Pyrolysis characteristic parameters of individual samples and biomass/waste plastic blend

    Sample tb/℃ tm /℃ tf/℃ Dm /(%·min-1)
    P1 P2 P3 P1 P2 P3
    PP0 265 299 353 - 501 0.47 1.05 -
    PP0.25 268 298 352 468 482 0.36 0.83 0.71
    PP0.5 266 298 353 463 477 0.24 0.55 1.44
    PP0.75 274 300 350 462 475 0.13 0.36 2.33
    PP1 417 - - 455 471 - - 3.06
    atb: the start temperature, while the conversion ratio is 5×(1-x)%; Pn: n weight loss range; tm: the temperature while the weight loss ratio is the largest; tf: the ending temperature, while the conversion ratio is 95%; Dm: the largest weight loss ratio
    下载: 导出CSV

    表  4  生物质与废塑料混合热解反应动力参数

    Table  4  Pyrolysis kinetic parameters of individual samples and biomass/waste plastics blend

    Sample Temperature
    t/℃
    Weight loss w/% n E/
    (kJ·mol-1)
    A/
    min-1
    R2 E-ave/
    (kJ·mol-1)
    E-cal/
    (kJ·mol-1)
    PP0 265-304 21.58 1 101.88 1.86×108 0.9948 70.84
    304-391 68.72 1 70.52 1.68×105 0.9784
    391-501 9.70 1 4.050 4.62×10-2 0.9597
    PP0.25 268-309 16.19 1 97.86 4.72×107 0.9916 57.79 126.07
    309-390 45.19 1 55.60 4.11×103 0.9617
    390-482 38.62 0.5 43.55 3.97×1013 0.9183
    PP0.25-cal 266-304 14.55 1 98.83 6.34×107 0.9938 58.64
    304-391 47.45 1 54.97 3.63×103 0.9668
    391-474 37.99 0.5 47.84 9.40×1013 0.9120
    PP0.5 266-310 10.70 1 96.72 2.17×107 0.9866 62.13 181.31
    310-379 27.07 1 53.73 1.52×103 0.9864
    379-477 62.23 0.5 59.84 5.92×1014 0.8797
    PP0.5-cal 268-311 10.54 1 89.38 4.50×106 0.9877 69.59
    311-391 27.70 1 47.19 3.83×102 0.9499
    391-472 61.76 0.5 76.26 1.31×1016 0.8893
    PP0.75 274-311 4.64 1 101.85 2.96×107 0.9869 91.31 236.54
    311-377 12.61 1 56.44 1.18×103 0.9847
    377-475 82.75 0.5 96.03 3.00×1017 0.8741
    PP0.75-cal 269-311 4.82 1 87.14 1.25×106 0.9866 100.05
    311-384 13.03 1 47.57 1.84×102 0.9718
    384-471 82.14 0.5 109.15 3.31×1018 0.8890
    PP1 417-471 100.00 1 291.77 9.97×1031 0.9987 291.77
    PP0.25-cal: the theoretical value when the plastic ratio is 25%; E-ave: the average total activation energy; E-cal: the linear total activation energy
    下载: 导出CSV
  • [1] ISAHAK W N R W, HISHAM M W M, YARMO M A, HIN T Y. A review on bio-oil production from biomass by using pyrolysis method[J]. Renewable Sustainable Energy Rev, 2012, 16(8):5910-5923. doi: 10.1016/j.rser.2012.05.039
    [2] AL-SALEM S M, ANTELAVA A, CONSTANTINOU A, MANOS G, DUTTA A. A review on thermal and catalytic pyrolysis of plastic solid waste (PSW)[J]. J Environ Manage, 2017, 197:177-198. doi: 10.1016/j.jenvman.2017.03.084
    [3] 周利民, 王一平, 黄群武, 蔡俊青.生物质/塑料共热解热重分析及动力学研究[J].太阳能学报, 2007, 28(9):979-983. doi: 10.3321/j.issn:0254-0096.2007.09.008

    ZHOU Li-min, WANG Yi-ping, HUANG Qun-wu, CAI Jun-qing. TG analysis and kinetics of biomass/plastic co-pyrolysis[J]. Acta Energ Sol Sin, 2007, 28(9):979-983. doi: 10.3321/j.issn:0254-0096.2007.09.008
    [4] BU Q, CHEN K, XIE W, LIU Y Y, GAO M J, KONG X H, CHU Q L, MAO H P. Hydrocarbon rich bio-oil production, thermal behavior analysis and kinetic study of microwave-assisted co-pyrolysis of microwave-torrefied lignin with low density polyethylene[J]. Bioresour Technol, 2019, 291:121860. doi: 10.1016/j.biortech.2019.121860
    [5] HASSAN H, LIM J K, HAMEED B H. Catalytic co-pyrolysis of sugarcane bagasse and waste high-density polyethylene over faujasite-type zeolite[J]. Bioresour Technol, 2019, 284:406-414. doi: 10.1016/j.biortech.2019.03.137
    [6] HASSAN H, HAMEED B H, LIM J K. Co-pyrolysis of sugarcane bagasse and waste high-density polyethylene:Synergistic effect and product distributions[J]. Energy, 2020, 191:116545. doi: 10.1016/j.energy.2019.116545
    [7] OZSIN G, PUTUN A E. Insights into pyrolysis and co-pyrolysis of biomass and polystyrene:Thermochemical behaviors, kinetics and evolved gas analysis[J]. Energy Convers Manage, 2017, 149:675-685. doi: 10.1016/j.enconman.2017.07.059
    [8] CHEN W, LI K X, XIA M W, YANG H P, CHEN Y Q, CHEN X, CHE Q F, CHEN H P. Catalytic deoxygenation co-pyrolysis of bamboo wastes and microalgae with biochar catalyst[J]. Energy, 2018, 157:472-482. doi: 10.1016/j.energy.2018.05.149
    [9] 武宏香, 李海滨, 赵增立.煤与生物质热重分析及动力学研究[J].燃料化学学报, 2009, 37(5):538-545. doi: 10.3969/j.issn.0253-2409.2009.05.005

    WU Hong-xiang, LI Hai-bin, ZHAO Zeng-li. Thermogravimetric analysis and pyrolytic kinetic study on coal/biomas s blends[J]. J Fuel Chem Technol, 2009, 37(5):538-545. doi: 10.3969/j.issn.0253-2409.2009.05.005
    [10] LI X Y, LI J, ZHOU G Q, FENG Y, WANG Y J, YU G, DENG S B, HUANG J, WANG B. Enhancing the production of renewable petrochemicals by co-feeding of biomass with plastics in catalytic fast pyrolysis with ZSM-5 zeolites[J]. Appl Catal A:Gen, 2014, 481:173-182. doi: 10.1016/j.apcata.2014.05.015
    [11] JAKAB E, VARHEGYI G, FAIX O. Thermal decomposition of polypropylene in the presence of wood-derived materials[J]. J Anal Appl Pyrolysis, 2000, 56(2):273-285. doi: 10.1016/S0165-2370(00)00101-7
    [12] 彭锦星, 邵千钧, 陈丰农, 陈奋学, 袁伯增.基于超临界乙醇的竹子与聚乙烯共液化研究[J].太阳能学报, 2009, 30(8):1139-1144. doi: 10.3321/j.issn:0254-0096.2009.08.027

    PENG Jin-xing, SHAO Qian-jun, CHEN Feng-nong, CHEN Fen-xue, YUAN Bo-zeng. Experimental study on co-liquefaction of bamboo and PE in supercritical ethanol[J]. Acta Energ Sol Sin, 2009, 30(8):1139-1144. doi: 10.3321/j.issn:0254-0096.2009.08.027
    [13] BLOCK C, EPHRAIM A, HORTALA W E, MINH D P, VANDECASTEELE C A N. Co-pyrogasification of plastics and biomass, a review[J]. Waste Biomass Valorization, 2019, 10(3):483-509. doi: 10.1007/s12649-018-0219-8
    [14] BURRA K G, GUPTA A K. Kinetics of synergistic effects in co-pyrolysis of biomass with plastic wastes[J]. Appl Energy, 2018, 220:408-418. doi: 10.1016/j.apenergy.2018.03.117
    [15] XIANG Z P, LIANG J H, HERVAN Z, LIU Y Y, MAO H P, BU Q. Thermal behavior and kinetic study for co-pyrolysis of lignocellulosic biomass with polyethylene over cobalt modified ZSM-5 catalyst by thermogravimetric analysis[J]. Bioresour Technol, 2018, 247:804-811. doi: 10.1016/j.biortech.2017.09.178
    [16] BURRA K G, GUPTA A K. Synergistic effects in steam gasification of combined biomass and plastic waste mixtures[J]. Appl Energy, 2018, 211:230-236. doi: 10.1016/j.apenergy.2017.10.130
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  325
  • HTML全文浏览量:  186
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-17
  • 修回日期:  2020-03-01
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-03-10

目录

    /

    返回文章
    返回