留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

同晶取代法制备Cu-Ni双金属催化剂及其催化CO加氢合成乙醇性能

郑华艳 章敏 付华 张华成 李忠

郑华艳, 章敏, 付华, 张华成, 李忠. 同晶取代法制备Cu-Ni双金属催化剂及其催化CO加氢合成乙醇性能[J]. 燃料化学学报(中英文), 2019, 47(1): 84-91.
引用本文: 郑华艳, 章敏, 付华, 张华成, 李忠. 同晶取代法制备Cu-Ni双金属催化剂及其催化CO加氢合成乙醇性能[J]. 燃料化学学报(中英文), 2019, 47(1): 84-91.
ZHENG Hua-yan, ZHANG Min, FU Hua, ZHANG Hua-cheng, LI Zhong. CO hydrogenation to ethanol over copper-nickel bimetallic catalyst prepared by isomorphous substitution method[J]. Journal of Fuel Chemistry and Technology, 2019, 47(1): 84-91.
Citation: ZHENG Hua-yan, ZHANG Min, FU Hua, ZHANG Hua-cheng, LI Zhong. CO hydrogenation to ethanol over copper-nickel bimetallic catalyst prepared by isomorphous substitution method[J]. Journal of Fuel Chemistry and Technology, 2019, 47(1): 84-91.

同晶取代法制备Cu-Ni双金属催化剂及其催化CO加氢合成乙醇性能

基金项目: 

国家自然科学基金 21576179

国家自然科学基金 U1510203

详细信息
    通讯作者:

    LI Zhong, E-mail:lizhong@tyut.edu.cn

  • 中图分类号: O643

CO hydrogenation to ethanol over copper-nickel bimetallic catalyst prepared by isomorphous substitution method

Funds: 

the National Natural Science Foundation of China 21576179

the National Natural Science Foundation of China U1510203

  • 摘要: 采用定向同晶取代法制备了一系列镍孔雀石前驱体的Cu-Ni双金属催化剂。考察了前驱体结构以及催化剂表面组成对催化剂催化性能的影响,并采用浆态床反应器对催化剂的CO加氢制乙醇性能进行评价。实验结果表明,采用定向同晶取代法可以制备出(Cu,Ni)2CO3(OH)2纯物相,取代后的Ni2+主要富集在前驱体(Cu,Ni)2CO3(OH)2表面。焙烧后形成的(Cux,Ni1-x)O固溶体均匀地分散在CuO晶体结构中。还原后的催化剂中Cu、Ni相互均匀分散形成活性界面,促进了低碳醇的合成。其中,不连续分布的Ni活性位点阻止了碳链的进一步增长,从而提高了乙醇选择性。当Ni/Cu原料比为45:100时,(Cux,Ni1-x)O固溶体与CuO之间有较强的相互作用,表现出最好的反应活性和乙醇选择性。
  • 图  1  前驱体(Cu, Ni)2CO3(OH)2的XRD谱图

    Figure  1  XRD patterns of the (Cu, Ni)2CO3(OH)2 precursors

    图  2  前驱体(Cu, Ni)2CO3(OH)2的DTG曲线

    Figure  2  DTG curves of the (Cu, Ni)2CO3(OH)2 precursors

    图  3  Cu-Ni催化剂的XRD谱图

    Figure  3  XRD patterns of the Cu-Ni catalysts

    图  5  孔雀石焙烧形成的CuO和Cu-Ni 45催化剂在不同倍数下的TEM照片

    Figure  5  TEM images of the CuO catalyst derived from malachite and Cu-Ni 45 catalyst with different magnification times

    (a): TEM image of CuO catalyst with 50 nm; (a1): TEM image of CuO catalyst with 5 nm;
    (b): TEM image of Cu-Ni 45 catalyst with 50 nm; (b1): TEM image of Cu-Ni 45 catalyst with 5 nm

    图  4  Cu-Ni催化剂的Cu 2p3/2的XPS谱图

    Figure  4  Cu 2p3/2 XPS spectra of the Cu-Ni catalysts

    图  6  Cu-Ni催化剂的CO-TPD和H2-TPD谱图

    Figure  6  CO-TPD (a) and H2-TPD (b) patterns of Cu-Ni catalysts

    表  1  前驱体(Cu, Ni)2CO3(OH)2的晶胞参数和平均晶粒粒径

    Table  1  Lattice parameters and average crystallite size of the (Cu, Ni)2CO3(OH)2 precursors

    Catalyst d20-1a d21-1a va/nm3 Db/nm
    Cu 2.861 2.781 0.3646 28.5
    Cu-Ni 25 2.859 2.777 0.3646 24.8
    Cu-Ni 45 2.845 2.775 0.3644 15.4
    Cu-Ni 65 2.844 2.769 0.3644 18.1
    Cu-Ni 85 2.841 2.769 0.3632 18.3
    Cu-Ni 200 2.836 2.768 0.3633 19.0
    a: the lattice parameters of (Cu, Ni)2CO3(OH)2 were calculated from the XRD patterns;
    bD: crystallite size of the precursors, derived from XRD peak 2θ=31.3°
    下载: 导出CSV

    表  2  前驱体(Cu, Ni)2CO3(OH)2的ICP分析

    Table  2  ICP determination for the (Cu, Ni)2CO3(OH)2 precursors

    Catalyst Feed molar ratio Ni/Cu Ni/Cu
    (molar ratio)
    Ni/(Cu+Ni) by ICP(molar ratio) Ni/(Cu+Ni) by XPS(molar ratio)
    Cu-Ni 25 25:100 0.22 0.18 0.65
    Cu-Ni 45 45:100 0.40 0.28 0.66
    Cu-Ni 65 65:100 0.47 0.32 0.73
    Cu-Ni 85 85:100 0.49 0.33 0.79
    Cu-Ni 200 200:100 0.51 0.34 0.86
    下载: 导出CSV

    表  3  Cu-Ni催化剂的织构性质

    Table  3  Textural properties of the Cu-Ni catalysts

    Catalyst ABET/(m2·g-1) D/nm
    CuO (Cux, Ni1-x)O
    Cu 14.7 24.7 -
    Cu-Ni 25 28.3 15.8 18.5
    Cu-Ni 45 41.3 13.5 9.3
    Cu-Ni 65 34.7 14.2 11.7
    Cu-Ni 85 33.1 13.8 11.1
    Cu-Ni 200 19.8 17.9 16.0
    ABET: specific surface area of the Cu-Ni catalysts;
    D: crystallite size of CuO, derived from XRD peak 2θ=38.7°
    下载: 导出CSV

    表  4  Cu-Ni催化剂催化CO加氢合成醇性能

    Table  4  Catalytic performance of the copper-nickel bimetallic catalysts for CO hydrogenation to ethanol

    Catalyst xCO /% ectivity s/%
    CH4 CH3OH C2H5OH C3H7OH C4H9OH CxOH
    Cu-Ni 25 28.6 35.2 19.4 15.8 6.8 3.3 45.3
    Cu-Ni 45 35.3 38.5 21.8 19.1 5.3 2.9 49.1
    Cu-Ni 65 28.7 49.3 24.4 13.2 4.0 1.6 43.2
    Cu-Ni 85 25.8 50.4 31.0 11.7 2.2 0.9 45.8
    Cu-Ni 200 22.8 51.4 17.8 9.6 1.7 0.5 29.6
    reaction conditions: 270 ℃, 5.0 MPa, CO:H2(volume ratio)=1:2, 3000 L/(kg·h)
    下载: 导出CSV
  • [1] AO M, PHAM G H, SUNARSO J, TADE M O, LIU S. Active centers of catalysts for higher alcohol synthesis from syngas:A review[J]. ACS Catal, 2018, 8(8):7025-7050. doi: 10.1021/acscatal.8b01391
    [2] LUK H T, MONDELLI C, FERRE D C, STEWART J A, PEREZ-RAMIREZ J. Status and prospects in higher alcohols synthesis from syngas[J]. Chem Soc Rev, 2017, 46(5):1358-1426. doi: 10.1039/C6CS00324A
    [3] WANG L F, CAO A, LIU G L, ZHANG L H, LIU Y. Bimetallic CuCo nanoparticles derived from hydrotalcite supported on carbon fibers for higher alcohols synthesis from syngas[J]. Appl Sur Sci, 2016, 360:77-85. doi: 10.1016/j.apsusc.2015.10.234
    [4] XU X D, DOESBURG E B M, SCHOLTEN J J F. Synthesis of higher alcohols from syngas-recently patented catalysts and tentative ideas on the mechanism[J]. Catal Today, 1987, 2(1):125-170. http://cn.bing.com/academic/profile?id=92e8d545efc1881626c51133df0a3949&encoded=0&v=paper_preview&mkt=zh-cn
    [5] SU J J, MAO W, XU X C, YANG Z, LI H L, XU J, HAN Y F. Kinetic study of higher alcohol synthesis directly from syngas over CoCu/SiO2 catalysts[J]. AIChE J, 2014, 60(5):1797-1809. doi: 10.1002/aic.v60.5
    [6] WANG P, CHEN S Y, BAI Y X, GAO X F, LI X L, SUN K, XIE H J, YANG G H, HAN Y Z, TAN Y S. Effect of the promoter and support on cobalt-based catalysts for higher alcohols synthesis through CO hydrogenation[J]. Fuel, 2017, 195:69-81. doi: 10.1016/j.fuel.2017.01.050
    [7] XU R, YANG C, WEI W, LI W H, SUN Y H, HU T D. Fe-modified CuMnZrO2 catalysts for higher alcohols synthesis from syngas[J]. J Mol Catal A:Chem, 2004, 221:51-58. doi: 10.1016/j.molcata.2004.07.003
    [8] ZHAO N, XU R, WEI W, SUN Y H. CuMnZrO2 catalyst for alcohol synthesis by fischertropsch modified element[J]. React Kinet Catal Lett, 2002, 75(2):297-304. doi: 10.1023/A:1015203113811
    [9] XIAO K, QI X Z, BAO Z H, WANG X X, ZHONG L S, FANG K G, LIN M G, SUN Y H. CuFe, CuCo and CuNi nanoparticles as catalysts for higher alcohol synthesis from syngas:A comparative study[J]. Catal Sci Technol, 2013, 3(6):1591-1602. doi: 10.1039/c3cy00063j
    [10] NAGHASH A R, ETSELL T H, XU S. XRD and XPS study of Cu-Ni interactions on reduced copper-nickel-aluminum oxide solid solution catalysts[J]. Chem Mater, 2006, 18:2480-2488. doi: 10.1021/cm051910o
    [11] ZANDER S, E L KUNKES E L, SCHUSTER M E, SCHUMANN J, WEINBERG G, TESCHNER D, JACOBSEN N, SCHLOGL R, BEHRENS M. The role of the oxide component in the development of copper composite catalysts for methanol synthesis[J]. Angew Chem Int Ed Eng, 2013, 52(25):6536-6540. doi: 10.1002/anie.201301419
    [12] 李忠, 张小兵, 郭启海, 刘岩, 郑华艳.沉淀及老化温度对浆态床合成甲醇CuO/ZnO/Al2O3催化剂活性及稳定性的影响[J].燃料化学学报, 2012, 40(5):569-575. doi: 10.3969/j.issn.0253-2409.2012.05.010

    LI Zhong, ZHANG Xiao-bing, GUO Qi-hai, LIU Yan, ZHENG Hua-yan. Influence of precipitation and aging temperature on the performance of CuO/ZnO/Al2O3 catalyst for methanol synthesis in slurry reactor[J]. J Fuel Chem Technol, 2012, 40(5):569-575. doi: 10.3969/j.issn.0253-2409.2012.05.010
    [13] BEHRENS M, GIRGSDIES F. Structural effects of Cu/Zn substitution in the malachite-rosasite system[J]. Z Anorg Allg Chem, 2010, 636(6):919-927. doi: 10.1002/zaac.201000028
    [14] BEHRENS M. Coprecipitation:An excellent tool for the synthesis of supported metal catalysts-from the understanding of the well known recipes to new materials[J]. Catal Today, 2015, 246:46-54. doi: 10.1016/j.cattod.2014.07.050
    [15] BEHRENS M. Meso-and nano-structuring of industrial Cu/ZnO/(Al2O3) catalysts[J]. J Catal, 2009, 267(1):24-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=913a94f28cfbe76c4f82140052fd3cb9
    [16] LI J, ZHENG H Y, ZHANG X C, LI Z. First-principles investigation on Cu/ZnO catalyst precursor:Energetic, structural and electronic properties of Zn-doped Cu2(OH)2CO3[J]. Comp Mater Sci, 2015, 96:1-9. doi: 10.1016/j.commatsci.2014.08.038
    [17] 房德仁, 刘中民, 徐秀峰, 张慧敏.老化时间对Cu/ZnO/Al2O3合成甲醇催化剂性能的影响[J].燃料化学学报, 2006, 34(1):96-99. doi: 10.3969/j.issn.0253-2409.2006.01.020

    FANG De-ren, LIU Zhong-ming, XU Xiu-feng, ZHANG Hui-min. Influence of aging time on the properties of Cu/ZnO/Al2O3 catalysts for methanol synthesis[J]. J Fuel Chem Technol, 2006, 34(1):96-99. doi: 10.3969/j.issn.0253-2409.2006.01.020
    [18] TARASOV A, SCHUMANN J, GIRGSDIES F, THOMAS N, BEHRENS M. Thermokinetic investigation of binary Cu/Zn hydroxycarbonates as precursors for Cu/ZnO catalysts[J]. Thermochim Acta, 2014, 591(0):1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a3b6b7af127f47c47db90613f54cac6c
    [19] GAO Y, MENG F H, JI K M, SONG Y, LI Z. Slurry phase methanation of carbon monoxide over nanosized Ni-Al2O3 catalysts prepared by microwave-assisted solution combustion[J]. Appl Catal A:Gen, 2016, 510:74-83. doi: 10.1016/j.apcata.2015.11.006
    [20] 荆洁颖, 张子毅, 王世东, 李文英.焙烧温度对Ni/CaO-Al2O3结构及其催化重整性能的影响[J].燃料化学学报, 2018, 46(6):673-679. doi: 10.3969/j.issn.0253-2409.2018.06.005

    JING Jie-ying, ZHANG Zi-yi, WANG Shi-dong, LI Wen-ying. Influence of calcination temperature on the structure and catalytic reforming performance of Ni/CaO-Al2O3 catalyst[J]. J Fuel Chem Technol, 2018, 46(6):673-679. doi: 10.3969/j.issn.0253-2409.2018.06.005
    [21] BEHRENS M, STUDT F, KASATKIN I, KUHL S, HAVECKER M, ABILD-PEDERSEN F, ZANDER S, GIRGSDIES F, KURR P, KNIEP B L, TOVAR M, FISCHER R W, NORSKOV J K, SCHLOGL R. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts[J]. Science, 2012, 336(6083):893-897. doi: 10.1126/science.1219831
    [22] WU Q X, DUCHSTEIN L D L, CHIARELLO G L, CHRISTENSEN J M, DAMSGAARD C D, ELKJAR C F, WAGNER J B, TEMEL B, GRUNWALDT J D, JENSEN A D. In situ observation of Cu-Ni alloy nanoparticle formation by X-Ray diffraction, X-Ray absorption spectroscopy, and transmission electron microscopy:Influence of Cu/Ni ratio[J]. ChemCatChem, 2014, 6(1):301-310. doi: 10.1002/cctc.v6.1
    [23] CAO A, LIU G L, YUE Y Z, ZHANG L H, LIU Y. Nanoparticles of Cu-Co alloy derived from layered double hydroxides and their catalytic performance for higher alcohol synthesis from syngas[J]. RSC Adv, 2015, 5(72):58804-58812. doi: 10.1039/C5RA05190H
    [24] 郭强胜, 毛东森, 俞俊, 韩璐蓬.不同载体对负载型Cu-Fe催化剂CO加氢反应性能的影响[J].燃料化学学报, 2012, 40(9):1103-1109. doi: 10.3969/j.issn.0253-2409.2012.09.013

    GUO Qiang-sheng, MAO Dong-sen, YU Jun, HAN Lu-peng. Effects of different supports on the catalytic performance of supported Cu-Fe catalyst for CO hydrogenation[J]. J Fuel Chem Technol, 2012, 40(9):1103-1109. doi: 10.3969/j.issn.0253-2409.2012.09.013
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  95
  • HTML全文浏览量:  74
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-18
  • 修回日期:  2018-11-15
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-01-10

目录

    /

    返回文章
    返回