留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钴掺杂的铁酸铋催化PMS氧化单质汞的实验研究

马宵颖 赵毅 许佩瑶 马双忱

马宵颖, 赵毅, 许佩瑶, 马双忱. 钴掺杂的铁酸铋催化PMS氧化单质汞的实验研究[J]. 燃料化学学报(中英文), 2018, 46(3): 375-384.
引用本文: 马宵颖, 赵毅, 许佩瑶, 马双忱. 钴掺杂的铁酸铋催化PMS氧化单质汞的实验研究[J]. 燃料化学学报(中英文), 2018, 46(3): 375-384.
MA Xiao-ying, ZHAO Yi, XU Pei-yao, MA Shuang-chen. Removal of elemental mercury in flue gas with PMS solution catalyzed by Co doped BiFeO3[J]. Journal of Fuel Chemistry and Technology, 2018, 46(3): 375-384.
Citation: MA Xiao-ying, ZHAO Yi, XU Pei-yao, MA Shuang-chen. Removal of elemental mercury in flue gas with PMS solution catalyzed by Co doped BiFeO3[J]. Journal of Fuel Chemistry and Technology, 2018, 46(3): 375-384.

钴掺杂的铁酸铋催化PMS氧化单质汞的实验研究

基金项目: 

中央高校基本科研业务费重点项目 2014ZD41

国家科技部资助项目 2014BAC23B04-06

北京重大科技成果转化项目 Z151100002815012

详细信息
    通讯作者:

    MA Xiao-ying, Tel: 18903365161,E-mail: ncepuyxm@163.com

  • 中图分类号: X511

Removal of elemental mercury in flue gas with PMS solution catalyzed by Co doped BiFeO3

Funds: 

The project was supported by Fundamental Research Funds for the Central Universities 2014ZD41

National Science-Technology Support Plan of China 2014BAC23B04-06

Beijing Major Scientific and Technological Achievement Transformation Project of China Z151100002815012

  • 摘要: 采用酒石酸溶胶凝胶法制备了一系列的钴掺杂的铁酸铋催化剂(BiFe1-xCoxO3x=5%-20%,x为Co/CoFe物质的量比),借助于X射线衍射(XRD)、扫描电子显微镜(SEM)、比表面积(BET)、磁强振动计(VSM)、X射线光电子能谱(XPS)等手段对催化剂进行表征。在自制鼓泡反应器内,利用钴掺杂铁酸铋活化过一硫酸氢钾(PMS),开展了模拟烟气中单质汞脱除实验,获得反应的最佳条件。当钴掺杂量为10%,催化剂用量为0.5 g/L,PMS浓度为3.9 mmol/L,溶液初始pH值为8,反应温度70 ℃时,反应100 min内Hg0的平均脱除效率达89.36%。以乙醇和叔丁醇为淬灭剂,证明了·OH和SO4·-为Hg0催化氧化的活性物种,且SO4·-起主要作用,并结合XPS分析结果推测了脱汞反应机理。
  • 图  1  实验流程示意图

    Figure  1  Schematic diagram of experimental system

    图  2  BiFeO3和BiFe0.9Co0.1O3晶体的XRD谱图,BiFe0.9Co0.1O3的XPS光谱

    Figure  2  (a) XRD patterns of BiFeO3 and BiFe0.9Co0.1O3, (b) XPS spectra of BiFe0.9Co0.1O3

    图  3  室温下BiFe0.9Co0.1O3和 BiFeO3 的磁性

    Figure  3  Magnetic hysteresis of BiFe0.9Co0.1O3 and BiFeO3 at room temperature

    图  4  BiFeO3和BiFe0.9Co0.1O3的SEM照片

    Figure  4  SEM images of BiFeO3(a)and BiFe0.9Co0.1O3(b)

    图  5  BiFe0.9Co0.1O3氮吸附和解吸曲线

    Figure  5  N2 absorption and desorption curves of BiFe0.9Co0.1O3

    图  6  Co掺杂量对单质汞脱除效率的影响

    (PMS: 3.9 mmol/L; pH: 8; catalyst, 0.5 g/L; temperature: 70 ℃; Hg0:101 μg/m3; reaction time:100 min)

    Figure  6  Effect of Co ration in catalyst on Hg0 removal efficiency

    图  7  催化剂的用量对单质汞脱除效率的影响

    (PMS: 3.9 mmol/L; pH: 8; temperature: 70 ℃; Hg0:101 μg/m3; reaction time:100 min)

    Figure  7  Effect of catalyst dosage on Hg0 removal efficiency

    图  8  PMS的浓度对单质汞脱除效率的影响

    (pH: 8; catalyst: 0.5 g/L; temperature: 70 ℃; Hg0: 101 μg/m3; reaction time: 100 min)

    Figure  8  Effect of PMS concentration on Hg0 removal efficiency

    图  9  溶液pH值对单质汞脱除效率的影响

    (PMS: 3.9 mmol/L; catalyst: 0.5 g/L; temperature:70 ℃; Hg0: 101 μg/m3; reaction time: 100 min)

    Figure  9  Effect of solution pH on Hg0 removal efficiency

    图  10  反应温度对单质汞脱除效率的影响

    (PMS: 3.9 mmol/L; pH: 8; catalyst: 0.5 g/L; Hg0: 101 μg/m3; reaction time: 100 min)

    Figure  10  Effect of reaction temperature on Hg0 removal efficiency

    图  11  烟气组分对单质汞脱除效率的影响

    (a): CO2 and O2; (b): SO2; (c): NO (PMS: 3.9 mmol/L; pH: 8; temperature: 70 ℃; catalyst: 0.5 g/L; Hg0: 101 μg/m3; reaction time: 30 min)

    Figure  11  Effects of flue gas components on Hg0 removal efficiency

    图  12  淬灭剂对单质汞脱除效率的影响

    (PMS: 3.9 mmol/L; pH: 8; temperature: 70 ℃; catalyst: 0.5 g/L; Hg0: 101 μg/m3)

    Figure  12  Effect of quencher on elemental mercury removal efficiency

    图  13  脱汞反应前后催化剂表面XPS谱图

    Figure  13  XPS spectra of catalyst before and after reaction

    表  1  平行实验结果

    Table  1  Results of parallel test

    1 2 3 4 5 Average value Variance
    Removal efficiency /% 91.32 89.94 87.96 89.78 87.98 89.36 1.43
    下载: 导出CSV

    表  2  反应前后催化剂XPS分峰拟合分析

    Table  2  Results of XPS peak-differentiation-imitating analysis before and after reaction

    Element Before reaction After reaction
    binding energy E/eV valence state percentage/% binding energy E/eV valence state percentage/%
    Co 779.1 Co2+ 41.99 779.4 Co3+ 37.76
    780.1 Co2+ 38.99 780.3 Co3+ 39.10
    781.3 Co2+ 19.02 781.3 Co2+ 23.14
    Fe 709.8 Fe2+ 60.26 709.8 Fe2+ 71.14
    711.3 Fe3+ 15.28 711.3 Fe3+ 7.95
    712.9 Fe3+ 24.46 712.9 Fe3+ 20.91
    O 529.8 lattice oxygen 51.39 529.8 lattice oxygen 45.77
    531.2 hydroxyl oxygen 48.61 531.2 hydroxyl oxygen 52.45
    oxygen oxygen
    下载: 导出CSV
  • [1] ZHAO Y, HAO R L, GUO Q. A novel pre-oxidation method for elemental mercury removal utilizing a complex vaporized absorbent[J].J Hazard Mater, 2014, 280:118-126. doi: 10.1016/j.jhazmat.2014.07.061
    [2] LIU Y X, WANG Y, WANG Q, PAN J F, ZHANG Y, ZHOU J, ZHANG J. A study on removal of elemental mercury in flue gas using Fenton solution[J]. J Hazard Mater, 2015, 292:164-172. doi: 10.1016/j.jhazmat.2015.03.027
    [3] LIU Y X, ZHOU J F, ZHANG Y C, PAN J F, WANG Q, ZHANG J. Removal of Hg0 and simultaneous removal of Hg0/SO2/NO in flue gas using two Fenton-like reagents in a spray reactor[J]. Fuel, 2015, 145:180-188. doi: 10.1016/j.fuel.2014.12.084
    [4] ZHOU C, SUN L, ZHANG A, WU X, MA C, SU S. Fe3-x CuxO4 as highly active heterogeneous Fenton-like catalysts toward elemental mercury removal[J]. Chemosphere, 2015, 125:16-24. doi: 10.1016/j.chemosphere.2014.12.082
    [5] ZHOU C, WANG B, MA C, SONG Z J, ZENG Z. Gaseous elemental mercury removal through heterogeneous Fenton-like processes using novel magnetically separable Cu0.3Fe2.7-xTixO4catalysts[J]. Fuel, 2015, 161(2):254-261. http://chianti.ucsd.edu/cyto_web/plugins/pluginjardownload.php?id=590
    [6] JI Y, KONG D, LU J, HAO J, KANG F, YIN X. Cobalt catalyzed peroxymonosulfate oxidation of tetrabromobisphenol A:Kinetics, reaction pathways, and formation of brominated by-products[J]. J Hazard Mater, 2016, 313:229-237. doi: 10.1016/j.jhazmat.2016.04.033
    [7] WANG Y, ZHOU L, DUAN X, SUN H, TIN EL, JIN W. Photochemical degradation of phenol solutions on Co3O4nanorods with sulfate radicals[J]. Catal Today, 2015, 258:576-584. doi: 10.1016/j.cattod.2014.12.020
    [8] DENG J, SHAO Y, GAO N, TAN C, ZHAO S, HU X. CoFe2O4 magnetic nanoparticles as a highly active heterogeneous catalyst of oxone for the degradation of diclofenac in water[J]. J Hazard Mater, 2013, 262:836-844. doi: 10.1016/j.jhazmat.2013.09.049
    [9] FENG Y, LIU J, WU D, ZHOU Z, DENG Y, ZHANG T. Efficient degradation of sulfamethazine with CuCo2O4 spinel nanocatalysts for peroxymonosulfate activation[J].Chem Eng J, 2015, 280:514-524. doi: 10.1016/j.cej.2015.05.121
    [10] JAAFARZADEG N, GHANBARI F, AHMADI M. Catalytic degradation of 2, 4-dichlorophenoxyacetic acid (2, 4-D) by nano-Fe2O3 activated peroxymonosulfate:Influential factors and mechanism determination[J]. Chemosphere, 2016, 169:568-576. doi: 10.1021/es025896h?source=chemport
    [11] AN J, ZHU L, WANG N, SONG Z, YANG Z, DU D, TANG H. Photo-Fenton-like degradation of tetrabromobisphenol A with graphene BiFeO3 composite as a catalyst[J]. Chem Eng J, 2013, 219:225-237. doi: 10.1016/j.cej.2013.01.013
    [12] GU Y H, ZHAO J G, ZHANG W Y, LIU S, GE S P, CHEN W P, ZHANG Y. Improved ferromagnetism and ferroelectricity of La and Co co-doped BiFeO3 ceramics with Fe vacancies[J].Ceram Int, 2016, 42(7):8863-8868. doi: 10.1016/j.ceramint.2016.02.134
    [13] ZHANG L, YANG X, HAN E, ZHAO L, LIAN J. Reduced graphene oxide wrapped Fe3O4-Co3O4 yolk-shell nanostructures for advanced catalytic oxidation based on sulfate radicals[J]. Appl Surf Sci, 2017, 396:945-954. doi: 10.1016/j.apsusc.2016.11.066
    [14] KHARISOV B I, DIAS H V R, KHARISSOVA O V. Mini-review:Ferrite nanoparticles in the catalysis[J]. Arab J Chem, 2014, 1-13. https://www.sciencedirect.com/science/article/pii/S1878535214002901
    [15] REN Y, LIN L, MA J, YANG J, FENG J, FAN Z. Sulfate radicals induced from peroxymonosulfate by magnetic ferrospinel MFe2O4, (M=Co, Cu, Mn, and Zn) as heterogeneous catalysts in the water[J]. Appl Catal B:Environ, 2015, 165:572-578. doi: 10.1016/j.apcatb.2014.10.051
    [16] CAI C, ZHANG H, ZHONG X, HOU L. Ultrasound enhanced heterogeneous activation of peroxymonosulfate by a bimetallic Fe-Co/SBA-15 catalyst for the degradation of orange Ⅱ in water[J]. J Hazard Mater, 2014, 283:70-75. https://www.sciencedirect.com/science/article/pii/S030438941400716X
    [17] MADHAVAN J, MARUTHAMUTHU P, MURUGESAN S, ANANDAN S. Kinetic studies on visible light-assisted degradation of acid red 88 in presence of metal-ion coupled oxone reagent[J].Appl Catal B:Environ, 2008, 83(1/2):8-14. https://www.sciencedirect.com/science/article/pii/S0926337308000568
    [18] XU L, WANG J. Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient Fenton-like heterogeneous catalyst for degradation of 4-chlorophenol[J]. Environ Sci Technol, 2016, 46(18):10145-10153. https://www.sciencedirect.com/science/article/pii/S0925838817324271
    [19] YU Z, WANG W, SONG L, LU L, WANG Z, JIANQ X, DONG C, QIU R. Acceleration comparison between Fe2+/H2O2, and Co2+/oxone for decolouration of azo dyes in homogeneous systems[J]. Chem Eng J, 2013, 234:475-483. doi: 10.1016/j.cej.2013.08.013
    [20] XU X, YE Q, TANG T, WANG D. Hg0 oxidative absorption by K2S2O8solution catalyzed by Ag+ and Cu2+[J]. J Hazard Mater, 2008, 158(2/3):410-416. http://qiserver.ugr.es/cod/result.php?CODSESSION=rjgq0ukolm3upn5487v24ls4i1l9ten9&count=1000&page=0&order_by=sg&order=asc
    [21] NIKSA S, HELBLE J J, FUJIWARA N. Kinetic modeling of homogeneous mercury oxidation:The importance of NO and H2O in predicting oxidation in coal-derived systems[J]. Environ Sci Technol, 2001, 35(18):3701-3706. doi: 10.1021/es010728v
    [22] GUAN Y H, MA J, REN Y M, LIU Y L, LIN LQ, ZHANG C. Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals[J]. Water Res, 2013, 47(14):5431-5438. doi: 10.1016/j.watres.2013.06.023
    [23] ZOU J, MA J, CHEN L, LI X, GUAN Y, XIE P, PAN C. Rapid acceleration of ferrousiron/peroxymonosulfate oxidation of organic pollutants by promoting Fe(Ⅲ)/Fe(Ⅱ) cycle with hydroxylamine[J], Environ Sci Technol, 2013, 47(20):11685-11691. doi: 10.1021/es4019145
    [24] ZHANG T, ZHU H, CROUE J P. Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe2O4 spinel in water:efficiency, stability, and mechanism[J]. Environ Sci Technol, 2013, 47(6):2784-2791. doi: 10.1021/es304721g
    [25] WU Q, ZHANG H, ZHOU L, BAO C, ZHU H, ZHANG Y. Synthesis and application of rGO/CoFe2O4 composite for catalytic degradation of methylene blue on heterogeneous Fenton-like oxidation[J]. J Taiwan Inst Chem Eng, 2016, 67:484-494. doi: 10.1016/j.jtice.2016.08.004
    [26] XU Y, AI J, ZHANG H. The mechanism of degradation of bisphenol A using the magnetically separable CuFe2O4/peroxymonosulfate heterogeneous oxidation process[J]. J Hazard Mater, 2016, 309:87-96. doi: 10.1016/j.jhazmat.2016.01.023
    [27] HU P, LONG M. Cobalt-catalyzed sulfate radical-based advanced oxidation:A review on heterogeneous catalysts and applications[J]. Appl Catal B:Environ, 2016, 181:103-117. doi: 10.1016/j.apcatb.2015.07.024
    [28] TAN C, GAO N, DENG Y, DENG J, ZHOU S, LI J, XIN X. Radical induced degradation of acetaminophen with Fe3O4 magnetic nanoparticles as heterogeneous activator of peroxymonosulfate[J]. J Hazard Mater, 2014, 276:452-460. doi: 10.1016/j.jhazmat.2014.05.068
    [29] ERIC G H, SUDIPTA S, WILLIAM T S. Fenton-like reaction catalyzed by the rare earth Inner transition metal cerium[J]. Environ Sci Technol, 2008, 42(13):5014-5019. doi: 10.1021/es8001508
    [30] ZHAO Y, HAO R, ZHANG P, ZHOU S. An integrative process for Hg0 removal using vaporized H2O2/Na2S2O8[J]. Fuel, 2014, 136:113-121. doi: 10.1016/j.fuel.2014.07.046
    [31] SOMMAR J, KATARINA D, STROMBERG D, FENG X. A kinetic study of the gas-phase reaction between the hydroxyl radical and atomic mercury[J]. Atmos Environ, 2001, 35:3049-3054. doi: 10.1016/S1352-2310(01)00108-X
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  96
  • HTML全文浏览量:  29
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-11
  • 修回日期:  2018-01-11
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-03-10

目录

    /

    返回文章
    返回