留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应用水汽相变促进湿法脱硫净烟气中PM2.5和SO3酸雾脱除的研究

潘丹萍 吴昊 姜业正 刘亚明 徐齐胜 杨林军

潘丹萍, 吴昊, 姜业正, 刘亚明, 徐齐胜, 杨林军. 应用水汽相变促进湿法脱硫净烟气中PM2.5和SO3酸雾脱除的研究[J]. 燃料化学学报(中英文), 2016, 44(1): 113-119.
引用本文: 潘丹萍, 吴昊, 姜业正, 刘亚明, 徐齐胜, 杨林军. 应用水汽相变促进湿法脱硫净烟气中PM2.5和SO3酸雾脱除的研究[J]. 燃料化学学报(中英文), 2016, 44(1): 113-119.
PAN Dan-ping, WU Hao, JIANG Ye-zheng, LIU Ya-ming, XU Qi-sheng, YANG Lin-jun. Improvement in removal of fine particles and SO3 acid mist from desulfurized flue gas with heterogeneous condensation[J]. Journal of Fuel Chemistry and Technology, 2016, 44(1): 113-119.
Citation: PAN Dan-ping, WU Hao, JIANG Ye-zheng, LIU Ya-ming, XU Qi-sheng, YANG Lin-jun. Improvement in removal of fine particles and SO3 acid mist from desulfurized flue gas with heterogeneous condensation[J]. Journal of Fuel Chemistry and Technology, 2016, 44(1): 113-119.

应用水汽相变促进湿法脱硫净烟气中PM2.5和SO3酸雾脱除的研究

基金项目: 

国家自然科学基金 21276049

国家重点基础研究发展规划 2013CB228505

江苏省环境监测科研基金 1412

广东电网有限责任公司科技项目 K-GD2013-055

详细信息
    通讯作者:

    杨林军, Tel:13851784679, E-mail:101010340@seu.edu.cn

  • 中图分类号: X51

Improvement in removal of fine particles and SO3 acid mist from desulfurized flue gas with heterogeneous condensation

Funds: 

The project was supported by the National Natural Science Foundation of China 21276049

the Major State Basic Research Development Program of China 2013CB228505

Scientific Research Fund of Environmental Monitoring in Jiangsu Province 1412

the Science and Technology Project of Guangdong Power Grid Company K-GD2013-055

More Information
  • 摘要: 在石灰石-石膏法脱硫净烟气中分别采用添加适量蒸汽和湿空气方式建立PM2.5和SO3酸雾凝结长大所需的过饱和水汽环境, 在测试分析湿法脱硫净烟气中PM2.5及SO3酸雾物性的基础上, 考察了蒸汽及湿空气添加量、脱硫净烟气温度等的影响。结果表明, 湿法脱硫净烟气中PM2.5除含有燃煤飞灰外, 含CaSO4、CaSO3及未反应的CaCO3等组分; 由于SO3酸雾基本处于亚微米级粒径范围, 湿法烟气脱硫(WFGD) 系统对SO3酸雾的脱除率仅为35%-55%;添加适量蒸汽及湿空气方式均可促进湿法脱硫净烟气中PM2.5和SO3酸雾脱除, 最终排放浓度随蒸汽或湿空气添加量的增加而降低, 其中, 添加蒸汽方式适合于脱硫净烟气温度较低(≤50-55 ℃) 的场合, 在脱硫净烟气温度较高(≥55-60 ℃) 时, 利用添加湿空气方式替代添加蒸汽更具技术经济优势。
  • 图  1  实验系统示意图

    Figure  1  Schematic diagram of experimental system

    图  2  脱硫净烟气中细颗粒物X射线衍射谱图

    Figure  2  XRD of fine particles from WFGD outlet flue gas

    A-CaSO4·H2O; B-Ca (HSO4)2; E-CaSO3·H2O; H-Ca3 (SO3)2(SO4)(H2O)12; Q-Ca2 (CO3) SO4·H2O; S-CaSO4

    图  3  石灰石-石膏法脱硫净烟气中颗粒数浓度分布

    Figure  3  Number concentration distribution of fine particles from WFGD outlet flue gas

    图  4  SO3酸雾数浓度粒径分布

    Figure  4  Number concentration distribution of SO3 acid mist

    图  5  WFGD系统对SO3酸雾的脱除性能

    Figure  5  Removal efficiency of SO3 acid mist by WFGD system

    图  6  脱硫净烟气温度对过饱和水汽环境形成的影响

    Figure  6  Effect of desulfurized flue gas temperature on supersaturation and condensable water vapor

    (a): adding vapor; (b): adding moist air supersaturation: a: adding amount of vapor 0.05 kg/m3; b: adding amount of vapor 0.08 kg/m3; mass of condensable water vapor: c: adding amount of vapor 0.05 kg/m3; d: adding amount of vapor 0.08 kg/m3

    图  7  数浓度脱除率与蒸汽添加量的关系

    Figure  7  Removal efficiency at different amounts of steam

    图  8  烟气过饱和度与蒸汽添加量的关系

    Figure  8  Supersaturation as a function of steam added

    图  9  湿空气添加量与数浓度脱除效率的关系

    Figure  9  Removal efficiency as a function of humid air addition

    图  10  湿空气添加量与过饱和度的关系

    Figure  10  Supersaturation as a function of humid air addition

    图  11  脱硫净烟气温度与细颗粒物总脱除效率的关系

    Figure  11  Removal efficiency as a function of desulfurized flue gas temperature

  • [1] 王珲, 宋蔷, 姚强, 陈昌和.电厂湿法脱硫系统对烟气中细颗粒物脱除作用的实验研究[J].中国电机工程学报, 2008, 28(5): 1-7. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200805001.htm

    WANG Hui, SONG Qiang, YAO Qiang, CHEN Chang-he. Experimental study on removal effect of wet flue gas desulfurization system on fine particles from a coal-fired power plant[J]. Proc CSEE, 2008, 28(5): 1-7. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200805001.htm
    [2] MEIJ R, WINKEL H. The emissions and environmental impact of PM10 and trace elements from a modern coal-fired power plant equipped with ESP and wet FGD[J]. Fuel Process Technol, 2004, 85(6/7): 641-656. https://www.researchgate.net/publication/222317389_The_emissions_and_environmental_impact_of_PM10_and_trace_elements_from_a_modern_coal-fired_power_plant_equipped_with_ESP_and_wet_FGD
    [3] NIELSEN M T, LIVBJERG H, FOGH C L, JENSEN J N, SIMONSEN P, LUND C, POULSEN K, SANDER B. Formation and emission of fine particles from two coal-fired power plants[J]. Combust Sci Technol, 2002, 174(2): 79-113. doi: 10.1080/714922606
    [4] 鲍静静, 杨林军, 颜金培, 刘锦辉, 宋世娟.烟气湿法脱硫系统对细颗粒脱除性能的实验研究[J].化工学报, 2009, 60(5): 1260-1267. http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ200905037.htm

    BAO Jing-jing, YANG Lin-jun, YAN Jin-pei, LIU Jin-hui, SONG Shi-juan. Performance of removal of fine particles by WFGD system[J]. CIESC J, 2009, 60(5): 1260-1267. http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ200905037.htm
    [5] GOOCH J P, DISMUKES E B. Formation of sulfate aerosol in a SO2 scrubbing system. Presented at the Formation, Distribution, Impact, and Fate of Sulfur Trioxide in Utility Flue Gas Streams Conference, 1998.
    [6] SRIVASTAVA R K, MILLER C A. Emissions of sulfur trioxide from coal-fired power plants, Technical publication, Presented at POWER-GEN International 2002, December 10-12, 2002. Orlando, Florida.
    [7] 杨林军.燃烧源细颗粒物污染控制技术[M].北京:化学工业出版社, 2011.

    YANG Lin-jun. Control technology of fine particles from combustion[M]. Beijing: Chemical Industry Press, 2011.
    [8] JOANNON M, COZZOLINO G, CAVALIERE A, RAGUCCIA R. Heterogeneous nucleation activation in a condensational scrubber for particulate abatement[J]. Fuel Process Technol, 2013, 107: 113-118. doi: 10.1016/j.fuproc.2012.10.004
    [9] CALVERT S, JHAVERI N C. Flux force/condensation scrubbing[J]. J Air Pollut Control Assoc, 1974, 24(10): 946-951. doi: 10.1080/00022470.1974.10469994
    [10] HEIDENREICH S, VOGT U, BVTTNER H, EBERT F.A novel process to separate submicron particles from gases-a cascade of packed columns[J].Chem Eng Sci, 2000, 55(15): 2895-2905. doi: 10.1016/S0009-2509(99)00554-0
    [11] YANG L J, BAO J J, YAN J P, LIU J H, SONG S J, FAN F X.Removal of fine particles in wet flue gas desulfurization system by heterogeneous condensation[J]. Chem Eng J, 2010, 156(1): 25-32. doi: 10.1016/j.cej.2009.09.026
    [12] 鲍静静.应用蒸汽相变促进WFGD系统脱除细颗粒物的研究[D].南京:东南大学, 2012.

    BAO Jing-jing. Study on improving the removal of fine particles by heterogeneous condensation in WFGD system[D].Nanjing: Southeast University, 2012.
    [13] BRACHERT L, MERTENS J, KHAKHARIA P, SCHABER K. The challenge of measuring sulfuric acid aerosols: Number concentration and size evaluation using a condensation particle counter (CPC) and an electrical low pressure impactor (ELPI+)[J]. J Aerosol Sci, 2014, 67: 21-27. doi: 10.1016/j.jaerosci.2013.09.006
    [14] GB/T 21508-2008, 燃煤烟气脱硫设备性能测试方法[S].GB/T 21508-2008, Performance test method for coal-fired flue gas desulphurization equipment[S].
    [15] 王宝华, 张泽廷, 李群生.新型高效丝网除雾器的研究与应用[J].现代化工, 2004, 24(5): 50-53. http://www.cnki.com.cn/Article/CJFDTOTAL-XDHG200405015.htm

    WANG Bao-hua, ZHANG Ze-ting, LI Qun-sheng. Research and application of a new type of high efficient mesh mist eliminator[J]. Mod Chem Ind, 2004, 24(5): 50-53. http://www.cnki.com.cn/Article/CJFDTOTAL-XDHG200405015.htm
    [16] FLETCHER N H. The pysics of rainclouds[M]. London: Cambridge University Press, 1962, 386.
    [17] GORBUNOV B, HAMILTON R, CLEGG N, TOUMI R. Water nucleation on aerosol particles containing both organic and soluble inorganic substances[J]. Atmos Res, 1998, 47-48(1): 271-283. https://www.researchgate.net/publication/223328970_Water_nucleation_on_aerosol_particles_containing_both_organic_and_soluble_inorganic_substances
    [18] 熊桂龙, 辛成运, 杨林军, 陆斌.蒸汽相变协同湿法烟气脱硫系统烟气温湿度变化特性[J].中国电机工程学报, 2011, 31(8): 18-24. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201108003.htm

    XIONG Gui-long, XIN Cheng-yun, YANG Lin-jun, LU Bin. Temperature and humidity characteristics of flue gas from combined wet flue gas desulfurization system and heterogenous condensation[J]. Proc CSEE, 2011, 31(8): 18-24. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201108003.htm
    [19] HEIDENREICH S, EBERT F. Condensational droplet growth as a preconditioning technique for the separation of submicron particles from gases[J]. Chem Eng Process, 1995, 34(3): 235-244. doi: 10.1016/0255-2701(94)04009-5
  • 加载中
图(11)
计量
  • 文章访问数:  121
  • HTML全文浏览量:  65
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-08
  • 修回日期:  2015-07-27
  • 网络出版日期:  2022-03-23
  • 刊出日期:  2016-01-01

目录

    /

    返回文章
    返回