留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Facile synthesis of flower like Pd catalyst for direct ethanol solid oxide fuel cell

SUN Liang-liang LIU Li-li LUO Ling-hong WU Ye-fan SHI Ji-jun CHENG Ling XU Xu GUO You-min

孙良良, 刘丽丽, 罗凌虹, 吴也凡, 石继军, 程亮, 徐序, 郭友敏. 采用简易方法合成直接乙醇固体氧化物燃料电池海胆状Pd催化层[J]. 燃料化学学报(中英文), 2016, 44(5): 607-612.
引用本文: 孙良良, 刘丽丽, 罗凌虹, 吴也凡, 石继军, 程亮, 徐序, 郭友敏. 采用简易方法合成直接乙醇固体氧化物燃料电池海胆状Pd催化层[J]. 燃料化学学报(中英文), 2016, 44(5): 607-612.
SUN Liang-liang, LIU Li-li, LUO Ling-hong, WU Ye-fan, SHI Ji-jun, CHENG Ling, XU Xu, GUO You-min. Facile synthesis of flower like Pd catalyst for direct ethanol solid oxide fuel cell[J]. Journal of Fuel Chemistry and Technology, 2016, 44(5): 607-612.
Citation: SUN Liang-liang, LIU Li-li, LUO Ling-hong, WU Ye-fan, SHI Ji-jun, CHENG Ling, XU Xu, GUO You-min. Facile synthesis of flower like Pd catalyst for direct ethanol solid oxide fuel cell[J]. Journal of Fuel Chemistry and Technology, 2016, 44(5): 607-612.

采用简易方法合成直接乙醇固体氧化物燃料电池海胆状Pd催化层

基金项目: 

the National Nature Science Foundation of China 51302119

the National Nature Science Foundation of China 51162014

the National Nature Science Foundation of China 51462011

Anhui University personnel start-up funding 10117700069

详细信息
  • 中图分类号: TM911.44

Facile synthesis of flower like Pd catalyst for direct ethanol solid oxide fuel cell

Funds: 

the National Nature Science Foundation of China 51302119

the National Nature Science Foundation of China 51162014

the National Nature Science Foundation of China 51462011

Anhui University personnel start-up funding 10117700069

More Information
  • 摘要: 在室温下, 通过电位置换反应在固体氧化物燃料电池的Ni-YSZ (钇掺杂氧化锆) 阳极表面制备海胆状Pd催化层。该催化层的结构和性能通过SEM、XRD和电化学等表征手段进行表征。结果表明, 三维纳米花状Pd催化剂是由在Ni-YSZ阳极表面形成的多条纳米棒有序的组合而成。通过在Ni/YSZ阳极表面引入该催化层, 相比与传统Ni-YSZ阳极, 燃料电池的最高功率和稳定性都获得了很大的提升。该研究表明, 电位置换反应是一种很高效的在传统Ni-YSZ阳极表面制备纳米抗积炭的功能层的方法。
  • Figure  1  Schematic illustration of Pd nanoflowers synthesis (a) and SOFC with Pd functional layer (b)

    Figure  2  XRD pattern of the Ni-YSZ anode with Pd functional layer

    Figure  3  (a), (b) SEM images of the Pd functional layer, (c), (d) cross-section images of Pd-Ni-YSZ anode

    Figure  4  TEM images of the Pd nanoflowers at low (a) and high magnifications (b)

    Figure  5  I-V curves of fuel cell with Ni-YSZ and Pd-Ni-YSZ as anode with H2 and ethanol fuels measured at 750 ℃

    Figure  6  Impedance curves fuel cell with Ni-YSZ and Pd-Ni-YSZ with ethanol fuel as anode measured at 750 ℃

    Figure  7  Durability test of fuel cell with Pd-Ni/YSZ and Ni/YSZ as anode under OCV condition with ethanol as fuel

    Figure  8  SEM image of Ni-YSZ anode operated in ethanol fuel at 750 ℃ (a) and SEM of Pd-Ni-YSZ anode operated in ethanol at 750 ℃ (b) for 59 h

  • [1] ZHAN Z L, BARNETT S A. An octane-fueled Solid oxide fuel cell[J]. Science, 2005, 308 (5723): 844-847. doi: 10.1126/science.1109213
    [2] KOH Y H, SUN J J, KIM H E. Freeze casting of porous Ni-YSZ cermets[J]. Mater Lett, 2007, 61 (6): 1283-1287. doi: 10.1016/j.matlet.2006.07.009
    [3] GUO Y M, BESSAA M, AGUADO S, STEIL M C, REMBELSKI D, RIEU M, VIRICELLE J P, BEN AMEUR N, GUIZARD C, TARDIVAT C, VERNOUX P, FARRUSSENG D. An all porous solid oxide fuel cell (SOFC): A bridging technology between dual and single chamber SOFCs[J]. Energy Environ Sci, 2013, 6 (7): 2119-2123. doi: 10.1039/c3ee40131f
    [4] PARK E W, MOON H, PARK M, HYUN S H. Fabrication and characterization of Cu-Ni-YSZ SOFC anodes for direct use of methane via Cu-electroplating[J]. Int J Hydrogen Energy, 2009, 34 (13): 5537-5545. doi: 10.1016/j.ijhydene.2009.04.060
    [5] KAN H, LEE H. Sn-doped Ni/YSZ anode catalysts with enhanced carbon deposition resistance for an intermediate temperature SOFC[J]. Appl Catal B: Environ, 2010, 97 (1): 108-114. https://www.researchgate.net/publication/244111003_Sn-doped_NiYSZ_anode_catalysts_with_enhanced_carbon_deposition_resistance_for_an_intermediate_temperature_SOFC?_sg=1DFTVBHrYY2bR21pFaxGwq4y6-sVj3l00iHEMrh1C9rGCSWc-B3AJJUgQkfT3mToSyBvXLmcHw6p7kJv5zLWTQ
    [6] TAKEGUCHI T, KIKUCHI R, YANO T, EGUCHI K, MURATA K. Effect of precious metal addition to Ni-YSZ cermet on reforming of CH4 and electrochemical activity as SOFC anode[J]. Catal Today, 2003, 84 (3/4): 217-222. https://www.researchgate.net/publication/223536148_Effect_of_precious_metal_addition_to_Ni-YSZ_cermet_on_reforming_of_CH4_and_electrochemical_activity_as_SOFC_anode
    [7] YOON D, MANTHIRAM A. Ni-M (M=Sn and Sb) intermetallic-based catalytic functional layer as a built-in safeguard for hydrocarbon-fueled solid oxide fuel cells[J]. J Mater Chem A, 2015, 3 (43): 21824-21831. doi: 10.1039/C5TA05498B
    [8] MYUNG J, KIM S, SHIN T H, LEE D, IRVINE J T, MOON J, HYUN S. Nano-composite structural Ni-Sn alloy anodes for high performance and durability of direct methane-fueled SOFCs[J]. J Mater Chem A, 2015, 3 (26): 13801-13806. doi: 10.1039/C4TA06037G
    [9] YOON D, MANTHIRAM A. Hydrocarbon-fueled solid oxide fuel cells with surface-modified, hydroxylated Sn/Ni-Ce0.8Gd0.2O1.9 heterogeneous catalyst anode[J]. J Mater Chem A, 2014, 2 (40): 17041-17046. doi: 10.1039/C4TA02662D
    [10] WANG W, WANG H, RAN R, PARK H J, JUNG D W, KWAK C, SHAO Z P. Coking suppression in solid oxide fuel cells operating on ethanol by applying pyridine as fuel additive?[J]. J Power Sources, 2014, 206 (11): 20-29. http://www.sciencedirect.com/science/article/pii/S0378775314006120
    [11] BABAEI A, ZHANG L, LIU E, JIANG S P. Performance and carbon deposition over Pd nanoparticle catalyst promoted Ni/GDC anode of SOFCs in methane, methanol and ethanol fuels[J]. Int J Hydrogen Energy, 2012, 37 (20): 15301-15310. doi: 10.1016/j.ijhydene.2012.07.089
    [12] LEE S H, KIM H. Dual layered anode support for the internal reforming of methane for solid oxide fuel cells[J]. Ceram Int, 2014, 40 (4): 5959-5966. doi: 10.1016/j.ceramint.2013.11.043
    [13] HASAN M, NEWCOMB S B, ROHAN J F, RAZEEB K M. Ni nanowire supported 3D flower-like Pd nanostructures as an efficient electrocatalyst for electrooxidation of ethanol in alkaline media[J]. J Power Sources, 2012, 218 (12): 148-156. https://www.researchgate.net/publication/257225034_Ni_nanowire_supported_3D_flower-like_Pd_nanostructures_as_an_efficient_electrocatalyst_for_electrooxidation_of_ethanol_in_alkaline_media
    [14] LI M, XU S H, ZHU Y P, XU Y W, YANG P X, WANG L W, CHU P K. Three-dimensional nanoscale Co3O4 electrode on ordered Ni/Si microchannel plates for electrochemical supercapacitors[J]. Mater Lett, 2014, 132 : 405-408. doi: 10.1016/j.matlet.2014.06.148
    [15] STRUKOVA G K, STRUKOV G V, EGOROV S V, MAZIKIN A A, KHODOS II, VITKALOV S A. 3D-mesostructures obtained by self-organization of metallic nanowires[J]. Mater Lett, 2014, 128 : 212-215. doi: 10.1016/j.matlet.2014.04.140
    [16] YANG L, CHOI Y M, QIN W T, CHEN H Y, BLINN K, LIU M F, LIU P, BAI J M, TYSON T A, LIU M L. Promotion of water-mediated carbon removal by nanostructured barium oxide/nickel interfaces in solid oxide fuel cells[J]. Nat Commun, 2011, 2 : 2555-2559. http://www.sigmaaldrich.com/catalog/papers/21694705
    [17] CHAO C C, HSU C M, CUI Y, PRINZ F B. Improved solid oxide fuel cell performance with nanostructured electrolytes[J]. ACS Nano, 2011, 5 (7): 5692-5696. doi: 10.1021/nn201354p
    [18] MOTOYAMA M, CHAO C C, AN J, JUNG H J, GÜR T M, PRINZ F B. Nanotubular array solid oxide fuel cell[J]. ACS Nano, 2014, 8 (1): 340-351. doi: 10.1021/nn4042305
    [19] WANG C C, LUO L L, WU Y F, HOU B X, SUN L L. A novel multilayer aqueous tape casting method for anode-supported planar solid oxide fuel cell[J]. Mater Lett, 2011, 65 (14): 2251-2253. doi: 10.1016/j.matlet.2011.04.077
    [20] PARK H, LI X X, LAI S Y, CHEN D C, BLINN K S, LIU M F, CHOI S, LIU M L, PARK S, BOTTOMLEY L A. Electrostatic force microscopic characterization of early stage carbon deposition on nickel anodes in solid oxide fuel cells[J]. Nano Lett, 2015, 15 (9): 6047-6050. doi: 10.1021/acs.nanolett.5b02237
    [21] LIU M M, LU Y Z, CHEN W. PdAg nanorings supported on graphene nanosheets: Highly methanol-tolerant cathode electrocatalyst for alkaline fuel cells[J]. Adv Funct Mater, 2013, 23 (10): 1289-1296. doi: 10.1002/adfm.v23.10
    [22] SONG Y Y, JIA W Z, LI Y, XIA X H, WANG Q J, ZHAO J W, YAN Y D. Synthesis and patterning of prussian blue nanostructures on silicon wafer via galvanic displacement reaction[J]. Adv Funct Mater, 2007, 17 (15): 2808-2814. doi: 10.1002/(ISSN)1616-3028
    [23] BABAEI A, JIANG S P, LI J. Electrocatalytic promotion of palladium nanoparticles on hydrogen oxidation on Ni/GDC anodes of SOFCs via spilloverfuel cells and energy conversion[J]. J Electrochem Soc, 2009, 156 (9): B1022-1028. doi: 10.1149/1.3156637
  • 加载中
图(8)
计量
  • 文章访问数:  49
  • HTML全文浏览量:  18
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-20
  • 修回日期:  2016-02-25
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-05-10

目录

    /

    返回文章
    返回