留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

百香果内膜生物炭作为微生物燃料电池阴极催化剂的产电性能研究

邓丽芳 董格 蔡茜茜 唐家桓 袁浩然

邓丽芳, 董格, 蔡茜茜, 唐家桓, 袁浩然. 百香果内膜生物炭作为微生物燃料电池阴极催化剂的产电性能研究[J]. 燃料化学学报(中英文), 2018, 46(1): 120-128.
引用本文: 邓丽芳, 董格, 蔡茜茜, 唐家桓, 袁浩然. 百香果内膜生物炭作为微生物燃料电池阴极催化剂的产电性能研究[J]. 燃料化学学报(中英文), 2018, 46(1): 120-128.
DENG Li-fang, DONG Ge, CAI Xi-xi, TANG Jia-huan, YUAN Hao-ran. Biochar derived from the inner membrane of passion fruit as cathode catalyst of microbial fuel cells in neutral solution[J]. Journal of Fuel Chemistry and Technology, 2018, 46(1): 120-128.
Citation: DENG Li-fang, DONG Ge, CAI Xi-xi, TANG Jia-huan, YUAN Hao-ran. Biochar derived from the inner membrane of passion fruit as cathode catalyst of microbial fuel cells in neutral solution[J]. Journal of Fuel Chemistry and Technology, 2018, 46(1): 120-128.

百香果内膜生物炭作为微生物燃料电池阴极催化剂的产电性能研究

基金项目: 

国家重点基础研究发展规划 973 Program

国家重点基础研究发展规划 2015BAL04B02

国家重点基础研究发展规划 YZ201516

广东省项目 2015B090904009

广东省项目 2016A040403096

福建省项目福建省土壤环境健康与调控重点实验室(福建农林大学)开放课题 ptjh16002

详细信息
  • 中图分类号: X172

Biochar derived from the inner membrane of passion fruit as cathode catalyst of microbial fuel cells in neutral solution

Funds: 

the National Basic Research Program of China 973 Program

the National Basic Research Program of China 2015BAL04B02

the National Basic Research Program of China YZ201516

Guangdong Provincial Projects 2015B090904009

Guangdong Provincial Projects 2016A040403096

Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation (Fujian Agriculture and Forestry University) ptjh16002

More Information
  • 摘要: 以天然来源的生物质百香果内膜为原料,采用热解炭化-KOH活化的方法制备出比表面积大、孔隙结构好的纳米片生物炭(BXG-AC),并通过扫描电子显微镜(SEM)、X射线光电子能谱(XPS)等方法对所制备催化剂进行了元素组成和微观形貌表征,采用循环伏安扫描(CV)和线性伏安扫描(LSV)对材料的电化学性能进行分析。结果表明,百香果内膜生物炭经过KOH活化后,在0.1 mol/L的磷酸缓冲液(PBS)中表现出良好的电催化活性。将所制备的催化剂应用于单室MFCs阴极时,对应的MFC最大功率密度达1153.3 mW/m2,略低于Pt/C的1214.3 mW/m2,且此MFC运行60 d后,其性能未见明显降低。表明BXG-AC催化剂具有显著的催化活性和稳定性,为开发高效MFC阴极催化剂提供了新途径。
  • 图  1  百香果内膜生物炭制备过程示意图及SEM照片

    Figure  1  Schematic diagram of the preparation of passion fruit char and its SEM images

    图  2  BXG-C和BXG-AC的XPS全谱图;BXG-C和BXG-AC的XPS图谱中各N含量;C 1s、O 1s和N 1s的XPS谱图

    Figure  2  XPS survey of the BXG-C and BXG-AC showing C, O and N as the main elements; XPS representative N doping in the as-prepared carbon materials; the XPS C 1s, O 1s and N 1s spectra

    图  3  10 mV/s时Pt/C、BXG-C和BXG-AC在O2/N2饱和的0.1 mol/L PBS溶液中CV和LSV曲线

    Figure  3  CVs and LSV for Pt/C, BXG-C and BXG-AC in N2-and O2-saturated 0.1 mol/L PBS solutions at 10 mV/s

    图  4  O2饱和的0.1 mol/L PBS溶液中, Pt/C、BXG-C和BXG-AC (a、b和c)在不同转速时的LSV曲线及电子转移数(d)

    Figure  4  LSV (a, b, c) and number of transferred electrons (d) for Pt/C, BXG-C and BXG-AC at different rotation rates in O2-saturated 0.1 mol/L PBS solutions

    图  5  不同阴极催化剂组装MFCs的输出功率密度曲线、单极电势曲线及电池稳定运行输出电压曲线

    Figure  5  Power densities (a) and electrode potentials of MFCs (b) with different cathodes as a function of current density Long-term stability tests of the MFCs (c), (d) (the voltage outputs were examined at 1000 Ω)

    表  1  催化剂主要元素构成及相关性能

    Table  1  Major elements composition of the as-prepared catalysts and its relative performances

    Cathode catalyst BET
    A/(m2·g-1)
    Content of surface
    element w/%
    CV(V vs.
    Ag/AgCl)
    LSV(V vs.
    Ag/AgCl)
    n Pmax /(mW·m-2)
    C O N
    Pt/C - - - - 0.162 0.28 3.97 1 214.3
    BXG-C 210.1 74.1 23.7 2.2 0.115 0.20 3.71 665.3
    BXG-AC 422.7 73.7 22.5 3.8 0.158 0.27 3.91 1 152.3
    BET:the surface area;n:electron transfer number;Pmax:the maximum power density
    下载: 导出CSV
  • [1] LOGAN B E, HAMELERS B, ROZENDAL R, SCHRODER U, KELLER J, FREGUIA S, AELERMAN P, VERSTRAETE W, RABAEY K. Microbial fuel cells:Methodology and technology[J]. Environ Sci Technol, 2006, 40(17):5181-5192. doi: 10.1021/es0605016
    [2] 周秀秀, 顾早立, 郝小旋, 张姣, 张志强, 夏四清.剩余污泥燃料电池处理含铬废水的效能及机理[J].中国环境科学, 2014, 34(9):2245-2251. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_zghjkx201409013

    ZHOU Xiu-xiu, GU Zao-li, HAO Xiao-xuan, ZHANG Jiao, ZHANG Zhi-qiang, XIA Si-qing. Efficacy and mechanism of microbial fuel cell treating Cr (VI)-containing wastewater with excess sludge as substrate[J]. China Environ Sci, 2014, 34(9):2245-2251. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_zghjkx201409013
    [3] ROZENDAL R A, HAMELERS H V M, RABAEY K, KELLER J, BUISMAN C J N. Towards practical implementation of bioelectrochemical wastewater treatment[J]. Trends Biotechnol, 2008, 26(8):450-459. doi: 10.1016/j.tibtech.2008.04.008
    [4] FENG L Y, YAN Y Y, CHEN Y G, WANG L J. Nitrogen-doped carbon nanotubes as efficient and durable metal-free cathodic catalysts for oxygen reduction in microbial fuel cells[J]. Energy Environ Sci, 2011, 4(5):1892-1899. doi: 10.1039/c1ee01153g
    [5] 白立俊, 王许云, 何海波, 郭庆杰. M-N-C阴极催化剂的制备及其在微生物燃料电池中的应用[J].化工学报, 2014, 65(4):1267-1272. doi: 10.3969/j.issn.0438-1157.2014.04.016

    BAI Li-jun, WANG Xu-yun, HE Hai-bo, GUO Qing-jie. Preparation and characterization of M-N-C as cathode catalysts for microbial fuel cell[J]. CIESC J, 2014, 65(4):1267-1272. doi: 10.3969/j.issn.0438-1157.2014.04.016
    [6] HUILONG F, RUQUAN Y, GONGLAN Y. Boron-and nitrogen-doped graphene quantum dots/graphene hybrid nanoplatelets as efficient electrocatalysts for oxygen reduction[J]. ACS Nano, 2014, 8(10):10837-10843. doi: 10.1021/nn504637y
    [7] WAN W, WANG Q, ZHANG L. N-, P-and Fe-tridoped nanoporous carbon derived from plant biomass:An excellent oxygen reduction electrocatalyst for zinc-air battery[J]. J Mater Chem A, 2016, 4(22):8602-8609. doi: 10.1039/C6TA02150F
    [8] ZHOU L H, FU P, WEN D H, YUAN Y, ZHOU S G. Self-constructed carbon nanoparticles-coated porous biocarbon from plant moss as advanced oxygen reduction catalysts[J]. Appl Catal B:Environ, 2016, 181:635-643. doi: 10.1016/j.apcatb.2015.08.035
    [9] YUAN H R, DENG L F, CAI X X, ZHOU S G, CHEN Y, YUAN Y. Nitrogen-doped carbon sheets derived from chitin as non-metal bifunctional electrocatalysts for oxygen reduction and evolution[J]. RSC Adv, 2015, 5(69):56121-56129. doi: 10.1039/C5RA05461C
    [10] SONG M Y, PARK H Y, YANG D S, BHATTACHARJVA D, YU J S. Seaweed-derived heteroatom-doped highly porous carbon as an electrocatalyst for the oxygen reduction reaction[J]. ChemSusChem, 2014, 7(6):1764-1764. doi: 10.1002/cssc.201490026
    [11] GAO S, FAN H, ZHANG S. Nitrogen-enriched carbon from bamboo fungus with superior oxygen reduction reaction activity[J]. J Mater Chem A, 2014, 2(43):18263-18270. doi: 10.1039/C4TA03558E
    [12] YANG W, LI J, YE D D, ZHU X, LIAO Q. Bamboo charcoal as a cost-effective catalyst for an air-cathode of microbial fuel cells[J]. Electrochim Acta, 2017, 224:585-592. doi: 10.1016/j.electacta.2016.12.046
    [13] MA Y W, ZHANG L R, LI J J, NI H T, LI M, ZHANG J L, FENG X M, FAN Q L, HU Z, HUANG W. Carbon-nitrogen/graphene composite as metal-free electrocatalyst for the oxygen reduction reaction[J]. Chin Sci Bull, 2011, 56(33):3583-3589. doi: 10.1007/s11434-011-4730-6
    [14] AHMED J, KIM H J, KIM S. Polyaniline nanofiber/carbon black composite as oxygen reduction catalyst for air cathode microbial fuel cells[J]. J Electrochem Soc, 2012, 159(5):B497-B501. doi: 10.1149/2.049205jes
    [15] DENG L F, YUAN H R, CAI X X, RUAN Y Y, ZHOU S G, CHEN Y, YUAN Y. Honeycomb-like hierarchical carbon derived from livestock sewage sludge as oxygen reduction reaction catalysts in microbial fuel cells[J]. Int J Hydrogen Energy, 2016, 41(47):22328-22336. doi: 10.1016/j.ijhydene.2016.08.132
    [16] FENG H B, ZHENG M T, DONG H W, HA H, YONG X, SUN Z X, LONG C, CAI Y J, ZHAO X, ZHANG H R, LEI B F, Liu Y L. Three-dimensional honeycomb-like hierarchically structured carbon for high-performance supercapacitors derived from high-ash-content sewage sludge[J]. J Mater Chem A, 2015, 3(29):15225-15234. doi: 10.1039/C5TA03217B
    [17] DAS A, PISANA S, CHAKRABORTY B, PISCANEC S, SAHA S K, WAGHMARE U V, NOVOSELOV K S, KRISHNAMURTHY H R, GEIM A K, FERRARI A C, SOOD A K. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor[J]. Nat Nanotechnol, 2008, 3(4):210-215. doi: 10.1038/nnano.2008.67
    [18] HARRY M, DENIS S Y. Formation of active carbons from cokes using potassium hydroxide[J]. Carbon, 1984, 22(6):603-611. doi: 10.1016/0008-6223(84)90096-4
    [19] GUO Y P, YANG S F, YU K F, ZHAO J Z, WANG Z C, XU H D. The preparation and mechanism studies of rice husk based porous carbon[J]. Mater Chem Phys, 2002, 74(3):320-323. doi: 10.1016/S0254-0584(01)00473-4
    [20] HIROKI A, THOMAS K, FRANCO C, WILLIAN R S, MILO S P S, ALAN H W, RICHARD H F. Work functions and surface functional groups of multiwall carbon nanotubes[J]. J Phys Chem B, 1999, 103(28):8116-8121.
    [21] BAKER S E, CAI W, KASSETER T L, WEIDKAMP K P, HAMERS R J. Covalently bonded adducts of deoxyribonucleic acid (DNA) oligonucleotides with single-wall carbon nanotubes:Synthesis and hybridization[J]. Nano Lett, 2002, 2(12):1413-1417. doi: 10.1021/nl025729f
    [22] MARTINEZ M T, CALLEJAS M A, BENITO A M, COCHET M. Sensitivity of single wall carbon nanotubes to oxidative processing:structural modification, intercalation and functionalization[J]. Carbon, 2003, 41(12):2247-2256. doi: 10.1016/S0008-6223(03)00250-1
    [23] TAN Z A, ZHANG W Q, QIAN D P, CUI C H, XU Q, LI L J, LI S S, LI Y F. Solution-processed nickel acetate as hole collection layer for polymer solar cells[J]. Phys Chem Chem Phys, 2012, 14(41):14217-14223. doi: 10.1039/c2cp41465a
    [24] JIANG H L, ZHU Y H, FENG Q, SU Y H, YANG X L, LI C Z. Nitrogen and phosphorus dual-doped hierarchical porous carbon foams as efficient metal-free electrocatalysts for oxygen reduction reactions[J]. Chem Eur J, 2014, 20(11):3106-3112. doi: 10.1002/chem.201304561
    [25] LIU Q, CHEN S L, ZHOU Y, ZHENG S Q, HOU H Q, ZHAO F. Phosphorus-doped carbon derived from cellulose phosphate as efficient catalyst for air-cathode in microbial fuel cells[J]. J Power Sources, 2014, 261:245-248. doi: 10.1016/j.jpowsour.2014.03.060
    [26] SHAO Y Y, SUI J H, YIN G P, GAO Y Z. Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell[J]. Appl Catal B:Environ, 2008, 79(1):89-99. doi: 10.1016/j.apcatb.2007.09.047
    [27] YANG D S, BHATTACHARJYA D, INAMDAR S, PARK J, YU J S. Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media[J]. J Am Chem Soc, 2012, 134(39):16127-16130. doi: 10.1021/ja306376s
    [28] JIANG H L, ZHU Y H, FENG Q, SU Y H, YANG X L, LI C Z. Nitrogen and phosphorus dual-doped hierarchical porous carbon foams as efficient metal-free electrocatalysts for oxygen reduction reactions[J]. Chem Eur J, 2014, 20(11):3106-3112. doi: 10.1002/chem.201304561
    [29] SU Y H, JIANG H L, ZHU Y H, ZOU W J, YANG X L, CHEN J D, LI C Z. Hierarchical porous iron and nitrogen co-doped carbons as efficient oxygen reduction electrocatalysts in neutral media[J]. J Power Sources, 2014, 265:246-253. doi: 10.1016/j.jpowsour.2014.04.140
    [30] FENG L Y, CHEN Y G, CHEN L. Easy-to-operate and low-temperature synthesis of gram-scale nitrogen-doped raphene and its application as cathode catalyst in microbial fuel cells[J]. ACS Nano, 2011, 5(12):9611-9618. doi: 10.1021/nn202906f
    [31] WANG R, WANG H, ZHOU T. The enhanced electrocatalytic activity of okara-derived N-doped mesoporous carbon for oxygen reduction reaction[J]. J Power Sources, 2015, 274:741-747. doi: 10.1016/j.jpowsour.2014.10.049
    [32] ROCHE I, CHAINET E, CHATENET M, VONDRAK J. Carbon-supported manganese oxide nanoparticles as electrocatalysts for the oxygen reduction reaction (ORR) in alkaline medium:Physical characterizations and ORR mechanism[J]. J Phys Chem C, 2007, 111(3):1434-1443. doi: 10.1021/jp0647986
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  102
  • HTML全文浏览量:  42
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-22
  • 修回日期:  2017-10-12
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-01-10

目录

    /

    返回文章
    返回