留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二苯并噻吩分子印迹功能化MOF199吸附剂的制备及性能

陈颖 张琦 梁宏宝 田宫伟 李静

陈颖, 张琦, 梁宏宝, 田宫伟, 李静. 二苯并噻吩分子印迹功能化MOF199吸附剂的制备及性能[J]. 燃料化学学报(中英文), 2018, 46(9): 1130-1136.
引用本文: 陈颖, 张琦, 梁宏宝, 田宫伟, 李静. 二苯并噻吩分子印迹功能化MOF199吸附剂的制备及性能[J]. 燃料化学学报(中英文), 2018, 46(9): 1130-1136.
CHEN Ying, ZHANG Qi, LIANG Hong-bao, TIAN Gong-wei, LI Jing. Preparation and properties of dibenzothiophene molecularly imprinted functionalized MOF199 adsorbent[J]. Journal of Fuel Chemistry and Technology, 2018, 46(9): 1130-1136.
Citation: CHEN Ying, ZHANG Qi, LIANG Hong-bao, TIAN Gong-wei, LI Jing. Preparation and properties of dibenzothiophene molecularly imprinted functionalized MOF199 adsorbent[J]. Journal of Fuel Chemistry and Technology, 2018, 46(9): 1130-1136.

二苯并噻吩分子印迹功能化MOF199吸附剂的制备及性能

基金项目: 

国家自然科学基金 21463006

详细信息
  • 中图分类号: TQ424.3

Preparation and properties of dibenzothiophene molecularly imprinted functionalized MOF199 adsorbent

Funds: 

the National Natural Science Foundation of China 21463006

More Information
  • 摘要: 结合分子印迹技术,MOF199为基体,以二苯并噻吩(DBT)为模板分子,甲基丙烯酸(MAA)为功能单体,制备了新型表面分子印迹聚合物材料MOF@SMIP。采用SEM、BET、FT-IR等对其结构和形貌进行表征,在模拟油样中进行吸附评测,吸附平衡时间为1.5 h。MOF@SMIP对DBT吸附量为130.73 mg/g较MOF199吸附量37.79 mg/g有很大提升,同时MOF@SMIP吸附量对比MOF@NIP吸附量(57.13 mg/g)优势明显,印记因子fimp为2.29。吸附行为遵循伪一阶动力学模型说明吸附主要为物理过程。选择性吸附实验表明,MOF@SMIP对目标分子DBT表现出比对结构类似物苯并噻吩(BT)和联苯更高的亲和力,吸附DBT对干扰物BT和联苯的相对选择系数k'分别达到2.55和2.14。
  • 图  1  MOF199(a)、KMOF199(b)、MOF@SMIP(c)红外光谱谱图

    Figure  1  Infrared spectrum of MOF199 (a), KMOF199 (b), MOF@SMIP (c)

    图  2  MOF199 (a)和MOF@SMIP((b)、(c)、(d))的SEM照片

    Figure  2  SEM images of MOF199 (a) and MOF@SMIP ((b), (c), (d))

    图  3  MOF199、MOF@NIP和MOF@SMIP的氮气吸附-脱附等温曲线和粒径分布图

    Figure  3  Nitrogen adsorption-desorption isotherms and particle size distribution of MOF199, MOF@NIP and MOF@SMIP

    图  4  MOF@SMIP、MOF@NIP、MOF199对同一浓度DBT溶液的吸附动力学曲线

    Figure  4  MOF@SMIP, MOF@NIP, MOF199 for the same concentration of DBT solution adsorption kinetics curve

    图  5  MOF@SMIP对DBT、BT和联苯干扰物的吸附选择性

    Figure  5  Adsorption selectivity of MOF@SMIP towards DBT against BT and biphenyl interferents

    表  1  MOF199、MOF@NIP和MOF@SMIP的比表面积和多孔参数

    Table  1  Specific surface area and porosity parameters of MOF199, MOF@NIP and MOF@SMIP

    Adsorbent Specific surface area A/(m2·g-1) Specific pore volum v/(mL·g-1) Most accessible aperture d/nm
    MOF199 524.39 0.2942 2.42
    MOF@NIP 301.98 0.1444 2.07
    MOF@SMIP 364.16 0.1763 2.18
    下载: 导出CSV

    表  2  MOF@SMIP和MOF@NIP对DBT的吸附动力学参数

    Table  2  Adsorption kinetic parameters of DBT by MOF @ SMIP and MOF @ NIP

    Sample Qe,exp/
    (mg·g-1)
    Psedo-first-order Psedo-second-order
    Qe,cal/(mg·g-1) k1/min-1 R2 Qe,cal/(mg·g-1) k2/(g·mg-1·min-1) R2
    MOF@SMIP 130.73 131.49 0.0787 0.9780 147.77 0.00068 0.9272
    MOF@NIP 57.13 56.77 0.0595 0.9914 64.98 0.00115 0.9872
    下载: 导出CSV

    表  3  MOF@SMIP和MOF@NIP的吸附选择性

    Table  3  Adsorption selectivity of MOF@SMIP and MOF@NIP

    Adsorbate MOF@SMIP MOF@NIP
    Qe/(mg·g-1) Kd/(L·g-1) k Qe/(mg·g-1) Kd/(L·g-1) k k
    DBT 124.86 0.2548 42.32 0.079
    BT 44.73 0.1176 2.17 35.67 0.093 0.850 2.55
    Biphenyl 30.24 0.0980 2.60 29.01 0.065 1.22 2.14
    下载: 导出CSV
  • [1] 胡廷平, 张宴铭, 郑立辉, 范国枝.硅胶表面苯并噻吩分子印迹聚合物的分子识别与吸附性能[J].燃料化学学报, 2010, 38(6):722-729. doi: 10.3969/j.issn.0253-2409.2010.06.016

    HU Ting-ping, ZHANG Yan-ming, ZHENG Li-hui, FAN Guo-zhi. Molecular recognition and adsorption properties of benzothiophene molecularly imprinted polymers on silica gel surface[J]. J Fuel Chem Technol, 2010, 38(6):722-729. doi: 10.3969/j.issn.0253-2409.2010.06.016
    [2] CHEN L, XU S, LI J. Recent advances in molecular imprinting technology:Current status, challenges and highlighted applications[J]. Chem Soc Rev, 2011, 40(5):2922-2942. doi: 10.1039/c0cs00084a
    [3] YANG Y Z, LIU X G, XU B S. Recent advances in molecular imprinting technology for the deep desulfurization of fuel oils[J]. New Carbon Mater, 2014, 29(1):1-14. doi: 10.1016/S1872-5805(14)60121-9
    [4] MEHRZAD-SAMARIN M, FARIDBOD F, DEZFULI A S, GANJALI M R. A novel metronidazole fluorescent nanosensor based on graphene quantum dots embedded silica molecularly imprinted polymer[J]. Biosens Bioelectron, 2017, 92:618-623. doi: 10.1016/j.bios.2016.10.047
    [5] CHANUT N, BOURRELLY S, KUCHTA B, SERRE C, CHANG J S, WRIGHT P A, LLEWELLYN P L. Screening the effect of water vapour on gas adsorption performance:Application to CO2 capture from flue gas in metal-organic frameworks[J]. ChemSusChem, 2017, 10(7):1543-1553. doi: 10.1002/cssc.v10.7
    [6] CHOWDHUR Y, MOHAMMAD A. Metal-organic-frameworks for biomedical applications in drug delivery, and as MRI contrast agents[J]. J Biomed Mater Res A, 2017, 105(4):1184-1194. doi: 10.1002/jbm.v105.4
    [7] PAN H, ZHANG P, GAO D, ZHANG Y, LI P, LIU L, CAI L. Noninvasive visualization of respiratory viral infection usingbioorthogonal conjugated near-infrared-emitting quantum dots[J]. ACS Nano, 2014, 8(6):5468-5477. doi: 10.1021/nn501028b
    [8] ZHAO S N, SONG X Z, SONG S Y, ZHANG H J. Highly efficient heterogeneous catalytic materials derived from metal-organic framework supports/precursors[J]. Coordin Chem Rev, 2017, 337:80-96. doi: 10.1016/j.ccr.2017.02.010
    [9] XU Y, YIN X B, HE X W, ZHANG Y K. Electrochemistry and electrochemiluminescence from a redox-active metal-organic framework[J]. Biosens Bioelectron, 2015, 68:197-203. doi: 10.1016/j.bios.2014.12.031
    [10] BOUGRINI M, FLOREA A, CRISTEA C, SANDULESCU R, VOCANSON F, ERRACHID A, JAFFREZIC-RENAULT N. Development of a novel sensitive molecularly imprinted polymer sensor based on electropolymerization of a microporous-metal-organic framework for tetracycline detection in honey[J]. Food Control, 2016, 59:424-429. doi: 10.1016/j.foodcont.2015.06.002
    [11] GUO Z, FLOREA A, CRISTEA C, BESSUEILLE F, VOCANSON F, GOUTALAND F, JAFFREZIC-RENAULT N. 1, 3, 5-Trinitrotoluene detection by a molecularly imprinted polymer sensor based on electropolymerization of a microporous-metal-organic framework[J]. Sensor Actuat B:Chem, 2015, 207:960-966. doi: 10.1016/j.snb.2014.06.137
    [12] NGUYEN L T L, NGUYEN T T, NGUYEN K D, PHAN N T. Metal-organic framework MOF-199 as an efficient heterogeneous catalyst for the aza-Michael reaction[J]. Appl Catal A:Gen, 2012, 425:44-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0226088919
    [13] 王晓静, 刘超, 董悦, 李发堂, 赵君, 李玉佩.四氟硼酸改性活性炭的制备及其吸附脱除二苯并噻吩性能[J].燃料化学学报, 2015, 43(5):607-613. doi: 10.3969/j.issn.0253-2409.2015.05.013

    WANG Xiao-jing, LIU Chao, DONG Yue, LI Fa-tang, ZHAO Jun, LI Yu-pei. Preparation of activated carbon modified by tetrafluoroboric acid and its adsorptive removal of dibenzothiophene[J]. J Fuel Chem Technol, 2015, 43(5):607-613. doi: 10.3969/j.issn.0253-2409.2015.05.013
    [14] YUAN Z, LIU Y, AN F. Preparation and phenol-recognizing ability of a poly (methacrylic acid) molecular imprint on the surface of a silica gel[J]. Microchim Acta, 2011, 172(1/2):89-94. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0220181096
    [15] LI H, XU M, WANG S, LU C, LI Z. Preparation, characterization and selective recognition for vanillic acid imprinted mesoporous silica polymers[J]. Appl Surf Sci, 2015, 328:649-657. doi: 10.1016/j.apsusc.2014.12.085
    [16] LIU W, QIN L, SHI W, CHEN L, YANG Y, LIU X, XU B. Molecularly imprinted polymers on the surface of porous carbon microspheres for capturing dibenzothiophene[J]. Microchim Acta, 2016, 183(3):1153-1160. doi: 10.1007/s00604-016-1746-2
    [17] COLLET F, BART M, SERRES L, MIRIEL J. Porous structure and water vapour sorption of hemp-based materials[J]. Constr Build Mater, 2008, 22(6):1271-1280. doi: 10.1016/j.conbuildmat.2007.01.018
    [18] ZHANG L, YANG L, JELLE B P, WANG Y, GUSTAVSEN A. Hygrothermal properties of compressed earthen bricks[J]. Constr Build Mater, 2018, 162:576-583. doi: 10.1016/j.conbuildmat.2017.11.163
    [19] QIN L, SHI W, LIU W, YANG Y, LIU X, XU B. Surface molecularly imprinted polymers grafted on ordered mesoporous carbon nanospheres for fuel desulfurization[J]. RSC Adv, 2016, 6(15):12504-12513. doi: 10.1039/C5RA23582K
    [20] KHAN N A, JHUNG S H. Adsorptive removal and separation of chemicals with metal-organic frameworks:Contribution of π-complexation[J]. J Hazard Mater, 2017, 325:198-213. doi: 10.1016/j.jhazmat.2016.11.070
    [21] LEE K X, VALLA J A. Investigation of metal-exchanged mesoporous Y zeolites for the adsorptive desulfurization of liquid fuels[J]. Appl Catal B:Environ, 2017, 201:359-369. doi: 10.1016/j.apcatb.2016.08.018
    [22] YANG Y, LIU X, GUO M, LI S, LIU W, XU B. Molecularly imprinted polymer on carbon microsphere surfaces for adsorbing dibenzothiophene[J]. Colloid Surface A, 2011, 377(1):379-385. http://d.old.wanfangdata.com.cn/Conference/8396508
    [23] XU W, ZHOU W, XU P P, PAN J M, WU X Y, YAN Y S. A molecularly imprinted polymer based on TiO2 as a sacrificial support for selective recognition of dibenzothiophene[J]. Chem Eng J, 2011, 172(1):191-198. doi: 10.1016/j.cej.2011.05.089
    [24] YANG W, ZHOU W, XU W, LI H, HUANG W, JIANG B, YAN Y. Synthesis and characterization of a surface molecular imprinted polymer as a new adsorbent for the removal of dibenzothiophene[J]. J Chem Eng Data, 2012, 57(6):1713-1720. doi: 10.1021/je201380m
    [25] ZUHLKE C A, ANDERSON T P, ALEXANDER D R. Formation of multiscale surface structures on nickel via above surface growth and below surface growth mechanisms using femtosecond laser pulses[J]. Opt Express, 2013, 21(7):8460-8473. doi: 10.1364/OE.21.008460
    [26] YANG W, LIU L, ZHOU Z, LIU H, XIE B, XU W. Rational preparation of dibenzothiophene-imprinted polymers by surface imprinting technique combined with atom transfer radical polymerization[J]. Appl Surf Sci, 2013, 282:809-819. doi: 10.1016/j.apsusc.2013.06.063
    [27] LI Q, YANG K, LIANG Y, JIANG B, LIU J, ZHANG L, ZHANG Y. Surface protein imprinted core-shell particles for high selective lysozyme recognition prepared by reversible addition-fragmentation chain transfer strategy[J]. Acs Appl Mater Inter, 2014, 6(24):21954-21960. doi: 10.1021/am5072783
    [28] HUANG R, LIU Q, HUO J, YANG B. Adsorption of methyl orange onto protonated cross-linked chitosan[J]. Arab J Chem, 2017, 10(1):24-32. doi: 10.1016/j.arabjc.2013.05.017
    [29] LIU W, QIN L, YANG Y, LIU X, XU B. Synthesis and characterization of dibenzothiophene imprinted polymers on the surface of iniferter-modified carbon microspheres[J]. Mater Chem Phys, 2014, 148(3):605-613. doi: 10.1016/j.matchemphys.2014.08.024
    [30] ZHANG M, HUANG J, YU P, CHEN X. Preparation and characteristics of protein molecularly imprinted membranes on the surface of multiwalled carbon nanotubes[J]. Talanta, 2010, 81(1):162-166. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0216432878
    [31] YU C, FAN X, YU L, BANDOSZ T J, ZHAO Z, QIU J. Adsorptive removal of thiophenic compounds from oils by activated carbon modified with concentrated nitric acid[J]. Energy Fuels, 2013, 27(3):1499-1505. doi: 10.1021/ef400029b
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  98
  • HTML全文浏览量:  39
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-04
  • 修回日期:  2018-07-13
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-09-10

目录

    /

    返回文章
    返回