留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of silicon to aluminum ratio on the selectivity to propene in methanol conversion over H-ZSM-5 zeolites

HUANG Hui-wen ZHU Hui ZHANG Shan-he ZHANG Qiang LI Chun-yi

黄慧文, 朱辉, 张善鹤, 张强, 李春义. H-ZSM-5分子筛硅铝比对其催化的甲醇转化丙烯选择性的影响[J]. 燃料化学学报(中英文), 2019, 47(1): 74-83.
引用本文: 黄慧文, 朱辉, 张善鹤, 张强, 李春义. H-ZSM-5分子筛硅铝比对其催化的甲醇转化丙烯选择性的影响[J]. 燃料化学学报(中英文), 2019, 47(1): 74-83.
HUANG Hui-wen, ZHU Hui, ZHANG Shan-he, ZHANG Qiang, LI Chun-yi. Effect of silicon to aluminum ratio on the selectivity to propene in methanol conversion over H-ZSM-5 zeolites[J]. Journal of Fuel Chemistry and Technology, 2019, 47(1): 74-83.
Citation: HUANG Hui-wen, ZHU Hui, ZHANG Shan-he, ZHANG Qiang, LI Chun-yi. Effect of silicon to aluminum ratio on the selectivity to propene in methanol conversion over H-ZSM-5 zeolites[J]. Journal of Fuel Chemistry and Technology, 2019, 47(1): 74-83.

H-ZSM-5分子筛硅铝比对其催化的甲醇转化丙烯选择性的影响

基金项目: 

the National 973 Program of China 2012CB215006

Research Fund for the Doctoral Programme of Higher Education 14CX06035A

详细信息
  • 中图分类号: TQ536.9

Effect of silicon to aluminum ratio on the selectivity to propene in methanol conversion over H-ZSM-5 zeolites

Funds: 

the National 973 Program of China 2012CB215006

Research Fund for the Doctoral Programme of Higher Education 14CX06035A

More Information
  • 摘要: 本研究合成了一系列硅铝比不同(SiO2/Al2O3=50-4000),但晶粒粒径相近的ZSM-5分子筛,并考察了硅铝比对甲醇转化反应丙烯选择性的影响。采用XRD、N2吸附-脱附、NH3-TPD和Py-FTIR方法对合成的HZSM-5分子筛进行物化性质表征。实验结果表明,随着硅铝比的增大,初始甲醇转化率降低,其中,硅铝比为50-1600的样品可以实现甲醇的完全转化。在甲醇完全转化的条件下,随着硅铝比的增大,丙烯选择性单调增加,从机理角度出发,揭示了甲醇转化制丙烯反应中,甲基化/裂化循环相较于甲基化/脱烷基化循环进行程度更大。此外,本研究提出了在甲醇完全转化条件下,保证最大丙烯选择性所需要的临界酸密度值([AS]S),当甲醇进料量为0.162g/min时,该临界值为0.175μmol/m2
  • Figure  1  XRD patterns of the H-ZSM-5 zeolites with different SiO2/Al2O3 ratios

    Figure  2  NH3-TPD profiles of the H-ZSM-5 zeolites with different SiO2/Al2O3 ratios

    Figure  3  Methanol conversion (●/■), catalyst weight (1/2/3) and total acidity (0.003-0.419) of the H-ZSM-5 zeolites as a function of SiO2/Al2O3 ratio (reaction conditions: 723 K, 0.1 MPa, WHSV= 9.72 h-1)

    Figure  4  Selectivity to propene and ethene and the C2=/2MBu ratio for MTP over the H-ZSM-5 zeolites with different SiO2/Al2O3 ratios

    Figure  5  Proposed reaction pathways for methanol conversion over the H-ZSM-5 zeolites[33]

    Figure  6  Methanol conversion (◆) and propene selectivity (●) as a function of acid density

    Table  1  Textural properties and relative crystallinity of the H-ZSM-5 zeolites with different SiO2/Al2O3 ratios

    Sample Surface area a A/(m2·g-1) Pore volume a v/(cm3·g-1) Crystal size b d/nm Relative crystallinityc /%
    total micro external total micro meso
    HZ-5(50) 416.9 338.1 78.8 0.21 0.16 0.05 73 90.4
    HZ-5(100) 416.7 340.6 76.1 0.23 0.14 0.09 70 92.9
    HZ-5(200) 416.9 337.0 79.9 0.21 0.16 0.05 69 93.3
    HZ-5(400) 429.3 334.7 94.6 0.22 0.15 0.07 66 97.3
    HZ-5(800) 415.9 318.3 97.7 0.22 0.14 0.08 68 98.8
    HZ-5(1600) 428.9 328.3 100.6 0.21 0.14 0.07 69 98.6
    HZ-5(2400) 417.2 308.6 108.6 0.22 0.14 0.09 71 98.0
    HZ-5(3200) 421.8 306.6 115.2 0.21 0.13 0.08 68 96.8
    HZ-5(4000) 419.2 337.3 81.9 0.22 0.16 0.07 70 100.0
    a : surface area was obtained by the BET method; the micropore surface area and volume were determined by the t-plot method; total pore volume was estimated from the nitrogen adsorption at p/p0 = 0.99; the external surface area and mesopore volume were the difference between the total calculated value and the corresponding micropore data;
    b : crystal size was estimated by Scherrer's method from the XRD patterns using the diffraction peak at about 7.9°;
    c : relative crystallinity was estimated by comparing the XRD peak intensities at 2θ of 8.0°-9.0° and 22°-25° with those of the reference HZ-5 (4000) sample
    下载: 导出CSV

    Table  2  Acidity of H-ZSM-5 zeolites with different SiO2/Al2O3 ratios

    Sample Acidity a /(mmol·g-1) Strong/weaka B/L b
    weak medium strong total
    HZ-5(50) 0.214 0.091 0.114 0.419 0.534 0.588
    HZ-5(100) 0.101 0.046 0.076 0.223 0.756 0.168
    HZ-5(200) 0.036 0.022 0.030 0.088 0.867 0.097
    HZ-5(400) 0.016 0.011 0.014 0.041 0.906 0.015
    HZ-5(800) 0.007 0.005 0.009 0.021 1.363 0.014
    HZ-5(1600) 0.003 - 0.009 0.012 3.029 0.013
    HZ-5(2400) 0.001 - 0.004 0.005 2.538 0.013
    HZ-5(3200) 0.001 - 0.003 0.004 1.342 0.015
    HZ-5(4000) 0.001 - 0.002 0.003 0.748 0.041
    a : the amounts of weak, medium, and strong acid sites were calculated from the NH3-TPD profiles by integrating the ammonia desorption lines in the range of 373-500, 500-600, and 600-923 K, respectively;
    b: the ratio of Brønsted to Lewis (B/L) acidity is obtained by comparing the band at 1550 cm-1 to that at 1455 cm-1 in the Py-FTIR spectra
    下载: 导出CSV

    Table  3  Methanol conversion, product distribution and C4 hydrogen transfer index of for MTP over H-ZSM-5 zeolites with different SiO2/Al2O3 ratios

    Sample Conversion
    x/%
    Yield w/% C4-HTI
    CH4 C2-50 C2= C3= C4= C5= C6+
    HZ-5(50) 99.99 5.22 55.33 13.37 16.89 6.38 0.89 0.91 0.76
    HZ-5(100) 99.97 4.86 43.75 17.74 22.85 8.58 1.24 0.51 0.68
    HZ-5(200) 99.97 3.27 28.56 20.51 31.53 13.05 1.50 1.30 0.51
    HZ-5(400) 99.92 1.72 19.60 18.33 40.00 17.74 2.13 0.29 0.37
    HZ-5(800) 99.75 1.09 8.59 12.90 52.01 21.84 2.86 0.45 0.17
    HZ-5(1600) 99.54 1.52 3.15 8.33 58.60 22.89 3.91 1.08 0.06
    HZ-5(2400) 93.21 1.01 2.91 7.03 58.31 20.40 3.23 0.23 0.07
    HZ-5(3200) 89.50 3.75 2.83 7.72 42.84 22.45 9.31 0.44 0.05
    HZ-5(4000) 77.37 5.64 3.35 5.58 31.21 20.31 10.20 0.86 0.06
    下载: 导出CSV
  • [1] MEI C, WEN P, LIU Z, LIU H, WANG Y, YANG W, XIE Z, HUA W, GAO Z. Selective production of propylene from methanol:Mesoporosity development in high silica HZSM-5[J]. J Catal, 2008, 258(1):243-249. doi: 10.1016/j.jcat.2008.06.019
    [2] LIU J, ZHANG C, SHEN Z, HUA W, TANG Y, SHEN W, YUE Y, XU H. Methanol to propylene:Effect of phosphorus on a high silica HZSM-5 catalyst[J]. Catal Commun, 2009, 10(11):1506-1509. doi: 10.1016/j.catcom.2009.04.004
    [3] HUANG H, MENG X, CHEN C, ZHANG M, MENG Z, LI C, CUI Q. Effect of phosphorus addition on the performance of hierarchical ZSM-11 catalysts in methanol to propene reaction[J]. Catal Lett, 2016, 146(11):2357-2363. doi: 10.1007/s10562-016-1867-6
    [4] SUN C, DU J, LIU J, YANG Y, REN N, SHEN W, XU H, TANG Y. A facile route to synthesize endurable mesopore containing ZSM-5 catalyst for methanol to propylene reaction[J]. Chem Commun, 2010, 46(15):2671-2673. doi: 10.1039/b925850g
    [5] ZHAO G, TENG J, XIE Z, JIN W, YANG W, CHEN Q, TANG Y. Effect of phosphorus on HZSM-5 catalyst for C4-olefin cracking reactions to produce propylene[J]. J Catal, 2007, 248(1):29-37. doi: 10.1016/j.jcat.2007.02.027
    [6] CHEN J Q, BOZZANO A, GLOVER B, FUGLERUD T, KVISLE S. Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process[J]. Catal Today, 2005, 106(1/4):103-107. http://www.sciencedirect.com/science/article/pii/S0920586105005195
    [7] HICKMAN D A, SCHMIDT L D. Production of syngas by direct catalytic oxidation of methane[J]. Science, 1993, 259(5093):343-346. doi: 10.1126/science.259.5093.343
    [8] ASADULLAH M, ITO S, KUNIMORI K, YAMADA M, TOMISHIGE K. Biomass gasification to hydrogen and syngas at low temperature:Novel catalytic system using fluidized-bed reactor[J]. J Catal, 2002, 208(2):255-259. doi: 10.1006/jcat.2002.3575
    [9] WU W, GUO W, XIAO W, LUO M. Dominant reaction pathway for methanol conversion to propene over high silicon H-ZSM-5[J]. Chem Eng Sci, 2011, 66(20):4722-4732. doi: 10.1016/j.ces.2011.06.036
    [10] CHANG C D, SILVESTRI A J. The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts[J]. J Catal, 1977, 47(2):249-259. doi: 10.1016/0021-9517(77)90172-5
    [11] YANG Y, SUN C, DU J, YUE Y, HUA W, ZHANG C, SHEN W, XU H. The synthesis of endurable B-Al-ZSM-5 catalysts with tunable acidity for methanol to propylene reaction[J]. Catal Commun, 2012, 24:44-47. doi: 10.1016/j.catcom.2012.03.013
    [12] LEE Y J, KIM Y W, VISWANADHAM N, JUN K W, BAE J W. Novel aluminophosphate (AlPO) bound ZSM-5 extrudates with improved catalytic properties for methanol to propylene (MTP) reaction[J]. Appl Catal A:Gen, 2010, 374(1/2):18-25. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=489c5044660d8e94c2c9a6ec9ff4f0d4
    [13] ROSTAMIZADEH M, TAEB A. Highly selective Me-ZSM-5 catalyst for methanol to propylene (MTP)[J]. J Ind Eng Chem, 2015, 27:297-306. doi: 10.1016/j.jiec.2015.01.004
    [14] OLSBYE U, SVELLE S, BJØRGEN M, BEATO P, JANSSENS T V W, JOENSEN F, BORDIGA S, LILLERUD K P. Conversion of methanol to hydrocarbons:How zeolite cavity and pore size controls product selectivity[J]. Angew Chem Int Ed, 2012, 51(24):5810-5831. doi: 10.1002/anie.201103657
    [15] MENG X, YU Q, GAO Y, ZHANG Q, LI C, CUI Q. Enhanced propene/ethene selectivity for methanol conversion over pure silica zeolite:Role of hydrogen-bonded silanol groups[J]. Catal Commun, 2015, 61:67-71. doi: 10.1016/j.catcom.2014.12.011
    [16] HU S, GONG Y, XU Q, LIU X, ZHANG Q, ZHANG L, DOU T. Highly selective formation of propylene from methanol over high-silica EU-1 zeolite catalyst[J]. Catal Commun, 2012, 28:95-99. doi: 10.1016/j.catcom.2012.08.011
    [17] CHANG C D, CHU C T W, SOCHA R F. Methanol conversion to olefins over ZSM-5:Ⅰ. Effect of temperature and zeolite SiO2Al2O3[J]. J Catal, 1984, 86(2):289-296. doi: 10.1016/0021-9517(84)90374-9
    [18] ZHU Q, KONDO J N, SETOYAMA T, YAMAGUCHI M, DOMEN K, TATSUMI T. Activation of hydrocarbons on acidic zeolites:Superior selectivity of methylation of ethene with methanol to propene on weakly acidic catalysts[J]. Chem Commun, 2008, (41):5164-5166. doi: 10.1039/b809718f
    [19] ZHU Q, KONDO J N, YOKOI T, SETOYAMA T, YAMAGUCHI M, TAKEWAKI T, DOMEN K, TATSUMI T. The influence of acidities of boron-and aluminium-containing MFI zeolites on co-reaction of methanol and ethene[J]. Phys Chem Chem Phys, 2011, 13(32):14598-14605. doi: 10.1039/c1cp20338j
    [20] HASSANPOUR S, TAGHIZADEH M, YARIPOUR F. Preparation, characterization, and activity evaluation of H-ZSM-5 catalysts in vapor-phase methanol dehydration to dimethyl ether[J]. Ind Eng Chem Res, 2010, 49(9):4063-4069. doi: 10.1021/ie9013869
    [21] FATHI S, SOHRABI M, FALAMAKI C. Improvement of HZSM-5 performance by alkaline treatments:Comparative catalytic study in the MTG reactions[J]. Fuel, 2014, 116:529-537. doi: 10.1016/j.fuel.2013.08.036
    [22] WAN Z, WU W, LI G, WANG C, YANG H, ZHANG D. Effect of SiO2/Al2O3 ratio on the performance of nanocrystal ZSM-5 zeolite catalysts in methanol to gasoline conversion[J]. Appl Catal A:Gen, 2016, 523:312-320. doi: 10.1016/j.apcata.2016.05.032
    [23] MICHELS N L, MITCHELL S, PEREZ-RAMIREZ J. Effects of binders on the performance of shaped hierarchical MFI zeolites in methanol-to-hydrocarbons[J]. ACS Catal, 2014, 4(8):2409-2417. doi: 10.1021/cs500353b
    [24] ZHANG C, WU Q, LEI C, PAN S, BIAN C, WANG L, MENG X, XIAO F S. Solvent-free and mesoporogen-free synthesis of mesoporous aluminosilicate ZSM-5 zeolites with superior catalytic properties in the methanol-to-olefins reaction[J]. Ind Eng Chem Res, 2017, 56(6):1450-1460. doi: 10.1021/acs.iecr.7b00062
    [25] WEI R, LI C, YANG C, SHAN H. Effects of ammonium exchange and Si/Al ratio on the conversion of methanol to propylene over a novel and large partical size ZSM-5[J]. J Nat Gas Chem, 2011, 20(3):261-265. doi: 10.1016/S1003-9953(10)60198-3
    [26] EMEIS C A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J]. J Catal, 1993, 141(2):347-354. doi: 10.1006/jcat.1993.1145
    [27] BENITO P L, GAYUBO A G, AGUAYO A T, OLAZAR M, BILBAO J. Effect of Si/Al ratio and of acidity of H-ZSM5 zeolites on the primary products of methanol to gasoline conversion[J]. J Chem Technol Biot, 1996, 66(2):183-191. doi: 10.1002/(ISSN)1097-4660
    [28] PARRY E P. An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity[J]. J Catal, 1963, 2(5):371-379. doi: 10.1016/0021-9517(63)90102-7
    [29] OTHMAN I, MOHAMED R M, IBRAHIM I A, MOHAMED M M. Synthesis and modification of ZSM-5 with manganese and lanthanum and their effects on decolorization of indigo carmine dye[J]. Appl Catal A:Gen, 2006, 299:95-102. doi: 10.1016/j.apcata.2005.10.016
    [30] FIROOZI M, BAGHALHA M, ASADI M. The effect of micro and nano particle sizes of H-ZSM-5 on the selectivity of MTP reaction[J]. Catal Commun, 2009, 10(12):1582-1585. doi: 10.1016/j.catcom.2009.04.021
    [31] CAMPBELL S M, BIBBY D M, CODDINGTON J M, HOWE R F. Dealumination of HZSM-5 zeolites:Ⅱ. Methanol to gasoline conversion[J]. J Catal, 1996, 161(1):350-358. doi: 10.1006/jcat.1996.0192
    [32] STØCKER M. Methanol-to-hydrocarbons:Catalytic materials and their behavior1[J]. Microporous Mesoporous Mater, 1999, 29(1/2):3-48. http://d.old.wanfangdata.com.cn/Periodical/rlhxxb201205011
    [33] BJØRGEN M, SVELLE S, JOENSEN F, NERLOV J, KOLBOE S, BONINO F, PALUMBOC L, BORDIGAC S, OLSBYE U. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5:On the origin of the olefinic species[J]. J Catal, 2007, 249(2):195-207. doi: 10.1016/j.jcat.2007.04.006
    [34] HAW J F, SONG W G, MARCUD D M, NICHOLAS J B. The mechanism of methanol to hydrocarbon catalysis[J]. Acc Chem Res, 2003, 36(5):317-326. doi: 10.1021/ar020006o
    [35] BJØRGEN M, JOENSEN F, LILLERUD K P, OLSBYE U, SVELLE S. The mechanisms of ethene and propene formation from methanol over high silica H-ZSM-5 and H-beta[J]. Catal Today, 2009, 142(1/2):90-97. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d44715c411115d671895ca3bfe9fd9d8
    [36] SVELLE S, JOENSEN F, NERLOV J, OLSBYE U, LILLERUD K P, KOLBOE S, BJØRGEN M. Conversion of methanol into hydrocarbons over zeolite H-ZSM-5:Ethene formation is mechanistically separated from the formation of higher alkenes[J]. J Am Chem Soc, 2006, 128(46):14770-14771. doi: 10.1021/ja065810a
    [37] SVELLE S, OLSBYE U, JOENSEN F, BJØRGEN M. Conversion of methanol to alkenes over medium-and large-pore acidic zeolites:Steric manipulation of the reaction intermediates governs the ethene/propene product selectivity[J]. J Phys Chem C, 2007, 111(49):17981-17984. doi: 10.1021/jp077331j
    [38] SVELLE S, RØNNING P O, KOLBOE S. Kinetic studies of zeolite-catalyzed methylation reactions:1. Coreaction of[12C] ethene and[13C] methanol[J]. J Catal, 2004, 224(1):115-123. doi: 10.1016/j.jcat.2004.02.022
    [39] SVELLE S, RØNNING P O, OLSBYE U, KOLBOE S. Kinetic studies of zeolite-catalyzed methylation reactions. Part 2. Co-reaction of[12C] propene or[12C] n-butene and[13C] methanol[J]. J Catal, 2005, 234(2):385-400. doi: 10.1016/j.jcat.2005.06.028
    [40] HILL I M, AL HASHIMI S, BHAN A. Kinetics and mechanism of olefin methylation reactions on zeolites[J]. J Catal, 2012, 285(1):115-123. doi: 10.1016/j.jcat.2011.09.018
    [41] HILL I M, NG Y S, BHAN A. Kinetics of butene isomer methylation with dimethyl ether over zeolite catalysts[J]. ACS Catal, 2012, 2(8):1742-1748. doi: 10.1021/cs300317p
    [42] SUN X, MULLER S, SHI H, HALLER G L, SANCHEZ-SANCHEZ M, VAN VEEN A C, LERCHER J A. On the impact of co-feeding aromatics and olefins for the methanol-to-olefins reaction on HZSM-5[J]. J Catal, 2014, 314:21-31. doi: 10.1016/j.jcat.2014.03.013
    [43] ILIAS S, KHARE R, MALEK A, BHAN A. A descriptor for the relative propagation of the aromatic-and olefin-based cycles in methanol-to-hydrocarbons conversion on H-ZSM-5[J]. J Catal, 2013, 303:135-140. doi: 10.1016/j.jcat.2013.03.021
    [44] KHARE R, LIU Z, HAN Y, BHAN A. A mechanistic basis for the effect of aluminum content on ethene selectivity in methanol-to-hydrocarbons conversion on HZSM-5[J]. J Catal, 2017, 348:300-305. doi: 10.1016/j.jcat.2017.02.022
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  107
  • HTML全文浏览量:  52
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-09
  • 修回日期:  2018-11-14
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-01-10

目录

    /

    返回文章
    返回