留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

富氢气氛下CeO2-NiO纳米棒催化剂的CO选择性氧化性能研究

李树娜 朱刚 石奇 杜威 朱华青 王瑞义 李志凯 张亚刚

李树娜, 朱刚, 石奇, 杜威, 朱华青, 王瑞义, 李志凯, 张亚刚. 富氢气氛下CeO2-NiO纳米棒催化剂的CO选择性氧化性能研究[J]. 燃料化学学报(中英文), 2019, 47(9): 1111-1119.
引用本文: 李树娜, 朱刚, 石奇, 杜威, 朱华青, 王瑞义, 李志凯, 张亚刚. 富氢气氛下CeO2-NiO纳米棒催化剂的CO选择性氧化性能研究[J]. 燃料化学学报(中英文), 2019, 47(9): 1111-1119.
LI Shu-na, ZHU Gang, SHI Qi, DU Wei, ZHU Hua-qing, WANG Rui-yi, LI Zhi-kai, ZHANG Ya-gang. Performance of CO preferential oxidation of CeO2-NiO nanorod catalyst in H2-rich stream[J]. Journal of Fuel Chemistry and Technology, 2019, 47(9): 1111-1119.
Citation: LI Shu-na, ZHU Gang, SHI Qi, DU Wei, ZHU Hua-qing, WANG Rui-yi, LI Zhi-kai, ZHANG Ya-gang. Performance of CO preferential oxidation of CeO2-NiO nanorod catalyst in H2-rich stream[J]. Journal of Fuel Chemistry and Technology, 2019, 47(9): 1111-1119.

富氢气氛下CeO2-NiO纳米棒催化剂的CO选择性氧化性能研究

基金项目: 

国家自然科学基金 51704240

国家自然科学基金 21703276

国家自然科学基金 51602253

西安市科技计划项目 2017CGWL24

西安市科技计划项目 2017CGWL10

西安市科技计划项目 2019KJWL08

西安市科技计划项目 2019KJWL09

西安市科技计划项目 2016CXWL08

陕西省表面工程与再制造重点实验室天元开放基金 tywl2019-08

详细信息
  • 中图分类号: O643

Performance of CO preferential oxidation of CeO2-NiO nanorod catalyst in H2-rich stream

Funds: 

the National Natural Science Foundation of China 51704240

the National Natural Science Foundation of China 21703276

the National Natural Science Foundation of China 51602253

the Special Natural Science Foundation of Science and Technology Bureau of Xi′an City 2017CGWL24

the Special Natural Science Foundation of Science and Technology Bureau of Xi′an City 2017CGWL10

the Special Natural Science Foundation of Science and Technology Bureau of Xi′an City 2019KJWL08

the Special Natural Science Foundation of Science and Technology Bureau of Xi′an City 2019KJWL09

the Special Natural Science Foundation of Science and Technology Bureau of Xi′an City 2016CXWL08

Tianyuan Open Fund of the Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province tywl2019-08

More Information
  • 摘要: 采用水热法制备了一系列不同Ce/Ni物质的量比的纳米棒CeO2x)-NiO催化剂。运用低温N2吸附-脱附、XRD、TEM、拉曼光谱、H2-TPR及XPS等技术对催化剂的形貌、结构进行了表征。考察了Ce/Ni物质的量比对CeO2x)-NiO催化剂形貌及富氢气氛下CO选择性氧化(CO PROX)反应性能的影响。TEM测试结果表明,调变Ce/Ni物质的量比可制得不同粒径的CeO2x)-NiO纳米棒催化剂。H2-TPR测试结果表明,将NiO掺入CeO2可提升CeO2x)-NiO催化剂的氧化还原能力。拉曼光谱及XPS测试结果表明,镍含量较低时,CeO2x)-NiO催化剂表面活性氧物种及氧空位含量均较多,利于提升其催化性能。CO PROX催化性能测试结果显示,镍含量较低的CeO2(0.89)-NiO纳米棒催化剂的活性和选择性最好,在170-220 ℃的反应条件下,CO转化率为100%,CO2选择性为52%。
  • 图  1  CeO2(x)-NiO纳米棒催化剂的XRD谱图

    Figure  1  XRD patterns of the CeO2(x)-NiO nanorods catalysts with different Ce contents

    a: x=1; b: x=0.89; c: x=0.5; d: x=0.11; e: x=0

    图  2  CeO2(x)-NiO纳米棒催化剂的TEM照片

    Figure  2  TEM images of the CeO2(x)-NiO nanorods catalysts with different Ce contents

    (a): x=1; (b): x=0.89; (c): x=0.5; (d): x=0.11; (e): x=0

    图  3  CeO2(x)-NiO纳米棒催化剂的HRTEM照片

    Figure  3  HRTEM images of the CeO2(x)-NiO nanorods catalysts with different Ce contents

    (a): x=1; (b): x=0.5; (c): x=0

    图  4  CeO2(x)-NiO纳米棒催化剂的H2-TPR谱图

    Figure  4  H2-TPR profiles of the CeO2(x)-NiO nanorods catalysts with different Ce contents

    a: x=1; b: x=0.89; c: x=0.5; d: x=0.11; e: x=0

    图  5  CeO2(x)-NiO纳米棒催化剂的拉曼光谱谱图

    Figure  5  Raman spectra of the CeO2(x)-NiO nanorods catalysts with different Ce contents

    a: x=1; b: x=0.89; c: x=0.5; d: x=0.11; e: x=0

    图  6  CeO2(x)-NiO纳米棒催化剂的Ce 3d XPS谱图

    Figure  6  Ce 3d XPS spectra of the CeO2(x)-NiO nanorods catalysts with different Ce contents

    a: x=1; b: x=0.89; c: x=0.5; d: x=0.11

    图  7  CeO2(x)-NiO纳米棒催化剂的Ni 2p XPS谱图

    Figure  7  Ni 2p XPS spectra of the CeO2(x)-NiO nanorods catalysts with different Ce contents

    a: x=0.89; b: x=0.5; c: x=0.11; d: x=0

    图  8  CeO2(x)-NiO纳米棒催化剂的O 1s XPS谱图

    Figure  8  O 1s XPS spectra of the CeO2(x)-NiO nanorods catalysts with different Ce contents

    a: x=1; b: x=0.89; c: x=0.5; d: x=0.11; e: x=0

    图  9  CeO2(x)-NiO纳米棒催化剂的CO PROX催化活性和选择性

    Figure  9  Temperature-programmed reaction of CO PROX over the CeO2(x)-NiO nanorods catalysts with different Ce contents

    表  1  CeO2(x)-NiO纳米棒催化剂的化学组成、比表面积和XRD分析

    Table  1  Chemical composition, surface area and XRD analysis results of the CeO2(x)-NiO nanorods catalysts with different Ce contents

    xa xICPb Ce content w/% Ni content w/% ABET /(m2·g-1) Cell parametera/nmc Crystallite size d/nmd
    x=1 0.99 - - 102.16 0.5416 22.9
    x=0.89 0.88 74.48 3.98 97.37 0.5408 26.1
    x=0.5 0.50 55.32 23.48 43.12 0.5410 29.8 (27.0)
    x=0.11 0.10 17.44 61.20 42.23 0.5412 30.4 (28.7)
    x=0 0 - - 31.30 - -(34.4)
    a: x is the nominal content of Ce in the composite oxides expressed as the atomic ratio of n(Ce)/(n(Ce) + n(Ni)); b: xICP is the value of the atomic ratio of n(Ce)/(n(Ce) + n(Ni)) determined by ICP analysis; c: calculated from the a value of the ceria (111) planes; d: crystalline size is calculated from the line broadening of CeO2 (111) and NiO (200) (digitals in brackets) diffraction peak by the Scherrer equation from XRD patterns
    下载: 导出CSV

    表  2  CeO2(x)-NiO纳米棒催化剂的H2-TPR表征

    Table  2  H2-TPR results of the CeO2(x)-NiO nanorods catalysts with different Ce contents

    x Peak position t/℃ H2 uptake/(μmol·g-1) Theoretical H2 uptake/(μmol·g-1)a
    x=1 450 1734 2904
    x=0.89 245, 375 1263, 1372 2756
    x=0.5 247, 358 760, 3856 4830
    x=0.11 374 8660 8798
    x=0 383 13333 13385
    a: theoretical H2 uptake for reduction of CeO2(x)-NiO nanorods catalysts, as calculated by assuming that CeO2 and NiO are stoichiometrically reduced to Ce2O3 and Ni, respectively
    下载: 导出CSV
  • [1] 王芳, 吕功煊.助剂改性对贵金属催化剂CO选择氧化活性中心的影响[J].化学进展, 2010, 22(8):1538-1549. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxjz201008004

    WANG Fang, LÜ Gong-xuan. Influence of promoters on active centers over nobel metal catalysts for CO selective oxidation[J]. Prog Chem, 2010, 22(8):1538-1549. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxjz201008004
    [2] HORNÉS A, HUNGRÍA A B, BERA P, LÓPEZ CÁMARA A, FERNÁNDEZ-GARCÍA M, MARTÍNEZ-ARIAS A, BARRIO L, ESTRELLA M, ZHOU G, FONSECA J J, HANSON J C, RODRIGUEZ J A. Inverse CeO2/CuO catalyst as an alternative to classical direct configurations for preferential oxidation of CO in hydrogen-rich stream[J]. J Am Chem Soc, 2010, 132(1):34-35. doi: 10.1021/ja9089846
    [3] ZHU H Q, QIN Z F, SHAN W J, SHEN W J, WANG J G. Low-temperature oxidation of CO over Pd/CeO2-TiO2 catalysts with different pretreatments[J]. J Catal, 2005, 233(1):41-50. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5565d26f854735e2b2155f31282225c6
    [4] BAO H Z, CHEN X, FANG J, JIANG Z Q, HUANG W X. Structure-activity relation of Fe2O3-CeO2 composite catalysts in CO oxidation[J]. Catal Lett, 2018, 125(1/2):160-167. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=60f22992be92c9a728afe83567b658d5
    [5] LIN S J, SU G J, ZHENG M H, JI D K, JIA M K, LIU Y X. Synthesis of flower-like Co3O4-CeO2 composite oxide and its application to catalytic degradation of 1, 2, 4-trichlorobenzene[J]. Appl Catal B:Environ, 2012, 123/124:440-447. doi: 10.1016/j.apcatb.2012.05.011
    [6] AKANDE A J, IDEM R O, DALAI A K. Synthesis, characterization and performance evaluation of Ni/Al2O3 catalysts for reforming of crude ethanol for hydrogen production[J]. Appl Catal A:Gen, 2005, 287(2):159-175. doi: 10.1016/j.apcata.2005.03.046
    [7] MARIÑO F, CERRELLA E, DUHALDE S, JOBBAGY M, LABORDE M. Hydrogen from steam reforming of ethanol:Characterization and performance of copper-nickel supported catalysts[J]. Int J Hydrogen Energy, 1998, 23(12):1095-1101. doi: 10.1016/S0360-3199(97)00173-0
    [8] SHAN W J, LUO M F, YING P L, SHEN W J, LI C. Reduction property and catalytic activity of Ce1-xNixO2 mixed oxide catalysts for CH4 oxidation[J]. Appl Catal A:Gen, 2003, 246(1):1-9. doi: 10.1016/S0926-860X(02)00659-2
    [9] LIU Y M, WANG L C, CHEN M, XU J, CAO Y, HE H Y, FAN K N. Highly selective Ce-Ni-O catalysts for efficient low temperature oxidative dehydrogenation of propane[J]. Catal Lett, 2009, 130(3/4):350-354. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=34060f1b0142b1983d30f407eb9b7dd6
    [10] ZHONG L S, HU J S, CAO A M, LIU Q, SONG W G, WAN L J. 3D flowerlike ceria micro/nanocomposite structure and its application for water treatment and CO removal[J]. Chem Mater, 2007, 19(7):1648-1655. doi: 10.1021/cm062471b
    [11] LI T Y, XIANG G L, ZHANG J, WANG X. Enhanced catalytic performance of assembled ceria necklace nanowires by Ni doping[J]. Chem Commun, 2011, 47(21):6060-6062. doi: 10.1039/c1cc11547b
    [12] ZHANG D S, FU H X, SHI L Y, PAN C S, LI Q, CHU Y L, YU W J. Synthesis of CeO2 nanorods via ultrasonication assisted by polyethylene glycol[J]. Inorg Chem, 2007, 46(7):2446-2451. doi: 10.1021/ic061697d
    [13] LI C R, SUN Q T, LU N P, CHEN B Y, DONG W Y. A facile route for the fabrication of CeO2 nanosheets via controlling the morphology of CeOHCO3 precursors[J]. J Cryst Growth, 2012, 343(1):95-100. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1a7175ba95f73fb57caab45c589265ea
    [14] HU F Y, CHEN J J, PENG Y, SONG H, LI K Z, LI J H. Novel nanowire self-assembled hierarchical CeO2 microspheres for low temperature toluene catalytic combustion[J]. Chem Eng J, 2018, 331:425-434. doi: 10.1016/j.cej.2017.08.110
    [15] ZHOU K B, WANG X, SUN X M, PENG Q, LI Y D. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes[J]. J Catal, 2005, 229(1):206-212. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a50b9779b191d19a996ddce2039b807d
    [16] SI R, FLYTZANI-STEPHANOPOULOS M. Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction[J]. Angew Chem Int Ed, 2008, 47(15):2884-2887. doi: 10.1002/anie.200705828
    [17] MAITARAD P, HAN J, ZHANG D, SHI L, NAMUANGRUK S, RUNGROTMONGKOL T. Structure-activity relationships of NiO on CeO2 nanorods for the selective catalytic reduction of NO with NH3:Experimental and DFT studies[J]. J Phys Chem C, 2014, 118(118):9612-9620. https://www.researchgate.net/publication/262188283_Structure-Activity_Relationships_of_NiO_on_CeO_2_Nanorods_for_the_Selective_Catalytic_Reduction_of_NO_with_NH_3_Experimental_and_DFT_Studies
    [18] ZHANG X, HOUSE S D, TANG Y, NGUYEN L, LI Y, OPALADE A A, YANG J C, SUN Z, FENG TAO F. Complete oxidation of methane on NiO nanoclusters supported on CeO2 nanorods through synergistic effect[J]. ACS Sustainable Chem Eng, 2018, 6(5):6467-6477. doi: 10.1021/acssuschemeng.8b00234
    [19] TANG C J LI J C, YAO X J, SUN J F, CAO Y, ZHANG L, GAO F, DENG Y, DONG L. Mesoporous NiO-CeO2 catalysts for CO oxidation:Nickel content effect and mechanism aspect[J]. Appl Catal A:Gen, 2015, 494:77-86. doi: 10.1016/j.apcata.2015.01.037
    [20] 李树娜, 宋佩, 张金丽, 贺小霞, 解一昕, 张亚刚, 王瑞义, 李志凯, 朱华青. CeO2-MnOx催化剂形貌对低浓度甲烷催化燃烧反应性能的影响[J].燃料化学学报, 2018, 46(5):615-624. doi: 10.3969/j.issn.0253-2409.2018.05.015

    LI Shu-na, SONG Pei, ZHANG Jin-li, HE Xiao-xia, XIE Yi-xin, ZHANG Ya-gang, WANG Rui-yi, LI Zhi-kai, ZHU Hua-qing. Morphological effect of CeO2-MnOx catalyst on their catalytic performance in lean methane combustion[J]. J Fuel Chem Technol, 2018, 46(5):615-624. doi: 10.3969/j.issn.0253-2409.2018.05.015
    [21] LI S N, ZHU H Q, QIN Z F, WANG G F, ZHANG Y G, WU Z W, LI Z K, CHEN G, DONG W W, WU Z H, ZHENG L R, ZHANG J, HU T D, WANG J G. Morphologic effects of nano CeO2-TiO2 on the performance of Au/CeO2-TiO2 catalysts in low-temperature CO oxidation[J]. Appl Catal B:Environ, 2014, 144(2):498-506. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0df82c10c28f8fe7ecf202c8e8090c7c
    [22] 孙敬方, 葛成艳, 姚小江, 曹原, 张雷, 汤常金, 董林.固相浸渍法制备NiO/CeO2催化剂及其在CO氧化反应中的应用[J].物理化学学报, 2013, 29(11):2451-2458. doi: 10.3866/PKU.WHXB201309041

    SUN Jing-fang, GE Cheng-yan, YAO Xiao-jiang, CAO Yuan, ZHANG Lei, TANG Chang-jin, DONG Lin. Preparation of NiO/CeO2 catalysts by solid state impregnation and their application in CO oxidation[J]. Acta Phys-Chim Sin, 2013, 29(11):2451-2458. doi: 10.3866/PKU.WHXB201309041
    [23] BENJARAM M R, ATAULLAH K, YUSUKE Y, TETSUHIKO K, STÉPHANE L, JEAN-CLAUDE V. Structural characterization of CeO2-MO2 (M=Si4+, Ti4+, and Zr4+) mixed oxides by Raman spectroscopy, X-ray photoelectron spectroscopy, and other techniques[J]. J Phys Chem B, 2003, 107(41):11475-11484. doi: 10.1021/jp0358376
    [24] NI X M, ZHAO Q B, ZHOU F, ZHENG H G, CHENG J, LI B B. Synthesis and characterization of NiO strips from a single source[J]. J Cryst Growth, 2006, 289(1):299-302. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f3ac569992f605a12f3c68ef5f46b622
    [25] MAHAMMADUNNISA Sk, MANOJ K, LINGAIAH N, SUBRAHMANYAM C. NiO/Ce1-xNixO2-δ as an alternative to noble metal catalysts for CO oxidation[J]. Catal Sci Technol, 2013, 3(3):730-736. doi: 10.1039/C2CY20641B
    [26] SOLSONA B, CONCEPCIÓN P, HERNÁNDEZ S, DENJAMIN B, LÓPEZ NIETO J. Oxidative dehydrogenation of ethane over NiO-CeO2 mixed oxides catalysts[J]. Catal Today, 2012, 180(1):51-58. doi: 10.1016/j.cattod.2011.03.056
    [27] ŚWIATOWSKA J, LAIR V, PEREIRA-NABAIS C, COTE G, MARCUS P, CHAGNES A. XPS, XRD and SEM characterization of a thin ceria layer deposited onto graphite electrode for application in lithium-ion batteries[J]. Appl Surf Sci, 2011, 257(21):9110-9119. doi: 10.1016/j.apsusc.2011.05.108
    [28] BEHZAD N, MEHRAN R, EBRAHIM N. Preparation of highly active and stable NiO-CeO2 nanocatalysts for CO selective methanation[J]. Int J Hydrogen Energy, 2015, 40(27):8539-8547. doi: 10.1016/j.ijhydene.2015.04.127
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  402
  • HTML全文浏览量:  173
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-19
  • 修回日期:  2019-06-28
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-09-10

目录

    /

    返回文章
    返回