留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZnCrOx/HZSM-5催化合成气直接转化制异构烷烃

王圣 黄镇 方越 秦枫 徐华龙 沈伟

王圣, 黄镇, 方越, 秦枫, 徐华龙, 沈伟. ZnCrOx/HZSM-5催化合成气直接转化制异构烷烃[J]. 燃料化学学报(中英文), 2018, 46(10): 1218-1224.
引用本文: 王圣, 黄镇, 方越, 秦枫, 徐华龙, 沈伟. ZnCrOx/HZSM-5催化合成气直接转化制异构烷烃[J]. 燃料化学学报(中英文), 2018, 46(10): 1218-1224.
WANG Sheng, HUANG Zhen, FANG Yue, QIN Feng, XU Hua-long, SHEN Wei. Direct synthesis of isoalkanes from syngas over ZnCrOx/HZSM-5 catalyst[J]. Journal of Fuel Chemistry and Technology, 2018, 46(10): 1218-1224.
Citation: WANG Sheng, HUANG Zhen, FANG Yue, QIN Feng, XU Hua-long, SHEN Wei. Direct synthesis of isoalkanes from syngas over ZnCrOx/HZSM-5 catalyst[J]. Journal of Fuel Chemistry and Technology, 2018, 46(10): 1218-1224.

ZnCrOx/HZSM-5催化合成气直接转化制异构烷烃

基金项目: 

国家科技重大专项 2017YFB0602204

国家科技部项目 91645201

上海市科委项目 14DZ2273900

详细信息
  • 中图分类号: O643.36

Direct synthesis of isoalkanes from syngas over ZnCrOx/HZSM-5 catalyst

Funds: 

the National Science and Technology Key Project of China 2017YFB0602204

the Ministry of Science and Technology of China 91645201

the Shanghai Science and Technology Committee 14DZ2273900

More Information
  • 摘要: 分别采用共沉淀法和水热法制备了ZnCrOx复合金属氧化物和HZSM-5沸石,通过物理混合得到双功能催化剂,实现了合成气一步高选择性制备异构烷烃。采用XRD、TEM、氮吸附和NH3-TPD等技术对催化剂进行了表征,考察了双功能催化剂中HZSM-5沸石组分硅铝比以及ZnCrOx/HZSM-5质量比(OX/ZEO mass ratio)对合成气催化转化反应性能的影响。结果表明,随着HZSM-5硅铝比的增加,催化剂酸密度下降,CO转化率略有下降,产物中C5+选择性显著提高,异构烷烃比例不断增加。此外,在保证CO转化率的前提下提高双功能催化剂中ZnCrOx组分的比例,产物中C5+的选择性也显著上升。在400 ℃、2.0 MPa、进料空速(GHSV)为3600 mL/(h·gcat)的条件下,合成气(H2/CO(volume ratio)=2)转化率达到35%,C5+选择性超过44%,且C5+中异戊烷比例高达65%。
  • 图  1  ZnCrOx(a)和HZSM-5(b)的X射线粉末衍射谱图

    Figure  1  XRD patterns of ZnCrOx(a) and HZSM-5(b)

    图  2  ZnCrOx和HZSM-5的透射电子显微镜照片

    Figure  2  TEM images of ZnCrOx and HZSM-5

    (a) and (b): ZnCrOx; (c): HZSM-5(20); (d): HZSM-5(40); (e): HZSM-5(80); (f): HZSM-5(160)

    图  3  不同硅铝比HZSM-5的NH3-TPD谱图

    Figure  3  NH3-TPD profiles of HZSM-5 with different Si/Al ratios

    图  4  不同温度下ZnCrOx/ HZSM-5(160)的催化反应性能

    Figure  4  Catalytic performance of ZnCrOx/ HZSM-5(160) in syngas conversion at different temperatures reaction conditions: 0.5 g ZnCrOx/HZSM-5

    (mass ratio = 1:1), H2/CO(volume ratio)=2, p=2.0 MPa, GHSV=3600 mL/(h·gcat), TOS= 4 h, C2-4=: C2-4 olefins, C2-4o: C2-4 alkanes, C5+: hydrocarbons with more than 5 carbons except aromatics, Ar: aromatics

    图  5  不同硅铝比ZnCrOx / HZSM-5催化反应产物中的烃类分布

    Figure  5  Hydrocarbon distribution for syngas conversion over ZnCrOx / HZSM-5 with different Si/Al ratios

    reaction conditions: 0.5 g ZnCrOx/HZSM-5 (mass ratio=1:1), H2/CO(volume ratio)=2, 400 ℃, 2.0 MPa, GHSV=3600 mL/(h·gcat), TOS=8 h

    图  6  不同OX/ZEO质量比ZnCrOx/HZSM-5催化反应产物中的烃类分布

    Figure  6  Hydrocarbon distribution for syngas conversion over ZnCrOx/ HZSM-5(160) with different OX/ZEO mass ratios

    reaction conditions: 0.5 g ZnCrOx/HZSM-5(160), H2/CO = 2(volume ratio), 400 ℃, 2.0 MPa, GHSV= 3600 mL/(h·gcat), TOS= 8 h

    表  1  ZnCrOx和HZSM-5样品的物理化学性质

    Table  1  Textural properties of the ZnCrOx and HZSM-5 samplesa

    Sample ABET/(m2·g-1) Amicro/(m2·g-1) Ameso/(m2·g-1) vpore/(mL·g-1) vmicro/(mL·g-1)
    ZnCrOx 88 0 88 0.407 0
    HZSM-5(20) 342 289 53 0.223 0.135
    HZSM-5(40) 356 303 53 0.312 0.135
    HZSM-5(80) 375 296 79 0.233 0.126
    HZSM-5(160) 363 283 80 0.226 0.121
    a: obtained by N2 physisorption
    下载: 导出CSV

    表  2  HZSM-5样品的表面酸性质

    Table  2  Surface acidity of H-ZSM-5 samplesa

    Sample t1/℃ Weak acidity/ (mmol·g-1) Weak acidity density /(μmol·m-2) t2 /℃ Strong acidity/ (mmol·g-1) Strong acidity density/ (μmol·m-2)
    HZSM-5(20) 172 0.41 1.19 267 0.24 0.70
    HZSM-5(40) 169 0.28 0.77 346 0.24 0.67
    HZSM-5(80) 158 0.13 0.34 333 0.13 0.33
    HZSM-5(160) 152 0.07 0.20 326 0.09 0.25
    a: obtained by NH3-TPD
    下载: 导出CSV

    表  3  不同硅铝比ZnCrOx/HZSM-5的催化反应性能

    Table  3  Catalytic performance of ZnCrOx/ HZSM-5 with different Si/Al ratios

    Catalyst CO
    conversion x/%
    CO2
    selectivity s/%
    ZnCrOx/HZSM-5(20) 39.9 42.0
    ZnCrOx/HZSM-5(40) 38.8 41.8
    ZnCrOx/HZSM-5(80) 37.3 40.6
    ZnCrOx/HZSM-5(160) 36.9 42.6
    ZnCrOx 5.6 42.9
    reaction conditions: 0.5 g ZnCrOx/HZSM-5(mass ratio=1:1), H2/CO(volume ratio)=2, 400 ℃, 2.0 MPa, GHSV=3600 mL/(h·gcat), TOS= 8 h
    下载: 导出CSV

    表  4  不同硅铝比ZnCrOx/HZSM-5催化反应产物中的C5+分布

    Table  4  C5+ distribution of hybrid ZnCrOx/HZSM-5 with different Si/Al ratios

    Catalyst C5+ distribution/% i/n ratio
    i-C5 n-C5 others
    ZnCrOx/HZSM-5(20) 48.7 13.9 37.4 3.5
    ZnCrOx/HZSM-5(40) 50.2 10.1 39.7 5.0
    ZnCrOx/HZSM-5(80) 56.6 9.7 33.7 5.8
    ZnCrOx/HZSM-5(160) 63.8 6.8 29.4 9.3
    reaction conditions: 0.5 g ZnCrOx/HZSM-5(mass ratio=1:1), H2/CO(volume ratio)=2, t=400 ℃, p=2.0 MPa, GHSV=3600 mL/(h·gcat), TOS=8 h
    下载: 导出CSV

    表  5  不同OX/ZEO质量比ZnCrOx/HZSM-5的催化反应性能

    Table  5  Catalytic performance of ZnCrOx/HZSM-5(160) with different OX/ZEO mass ratios

    OX/ZEO (mass ratio) CO conversion x/% CO2 selectivity s/%
    9:1 24.8 37.8
    4:1 27.4 37.7
    2:1 35.5 41.0
    1:1 36.9 42.6
    1:2 37.1 43.3
    1:4 36.5 45.3
    reaction conditions: 0.5 g ZnCrOx/HZSM-5(160), H2/CO(volume ratio)= 2, 400 ℃, 2.0 MPa, GHSV=3600 mL/(h·gcat), TOS=8 h
    下载: 导出CSV

    表  6  不同质量比ZnCrOx/HZSM-5催化反应产物中的C5+分布

    Table  6  C5+ distribution for syngas conversion over hybrid ZnCrOx/HZSM-5 with different OX/ZEO mass ratios

    OX/ZEO (mass ratio) C5+ distribution/% i/n ratio
    i-C5 n-C5 others
    9:1 47.1 1.8 51.1 25.8
    4:1 62.0 10.4 27.6 6.0
    2:1 65.4 6.9 27.7 9.4
    1:1 63.8 6.8 29.4 9.3
    1:2 55.9 3.5 40.6 15.9
    1:4 52.9 5.1 42.1 10.5
    reaction conditions: 0.5 g ZnCrOx/HZSM-5(160), H2/CO(volume ratio)=2, t=400 ℃, p=2.0 MPa, GHSV=3600 mL/(h·gcat), TOS=8 h
    下载: 导出CSV
  • [1] TORRES GALVIS H M, BITTER J H, KHARE C B, RUITENBEEK M, DUGULAN A I, DE JONG K P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science, 2012, 335(6070):835-838. doi: 10.1126/science.1215614
    [2] FU X-P, SHEN Q-K, SHI D, WU K, JIN Z, WANG X, SI R, SONG Q-S, JIA C-J, YAN C-H. Co3O4-Al2O3 mesoporous hollow spheres as efficient catalyst for Fischer-Tropsch synthesis[J]. Appl Catal B:Environ, 2017, 211:176-187. doi: 10.1016/j.apcatb.2017.04.036
    [3] ZHONG L, YU F, AN Y, ZHAO Y, SUN Y, LI Z, LIN T, LIN Y, QI X, DAI Y, GU L, HU J, JIN S, SHEN Q, WANG H. Cobalt carbide nanoprisms for direct production of lower olefins from syngas[J]. Nature, 2016, 538:84-87. doi: 10.1038/nature19786
    [4] LI X, FENG X, GE Q, FUJIMOTO K. Direct synthesis of iso-paraffins from syngas with slurry phase reaction[J]. Fuel, 2008, 87(4):534-538. http://cn.bing.com/academic/profile?id=cf4a6ebb11489c6626ff7010bfbcc244&encoded=0&v=paper_preview&mkt=zh-cn
    [5] ZHAO B, ZHAI P, WANG P F, LI J Q, LI T, PENG M, ZHAO M, HU G, YANG Y, LI Y W, ZHANG Q, FAN W, MA D. Direct transformation of syngas to aromatics over Na-Zn-Fe5C2 and hierarchical HZSM-5 tandem catalysts[J]. Chem, 2017, 3(2):323-333. doi: 10.1016/j.chempr.2017.06.017
    [6] JIAO F, LI J, PAN X, XIAO J, LI H, MA H, WEI M, PAN Y, ZHOU Z, LI M, MIAO S, LI J, ZHU Y F, XIAO D, HE T, YANG J H, QI F, FU Q, BAO X H. Selective conversion of syngas to light olefins[J]. Science, 2016, 351(6277):1065-1068. doi: 10.1126/science.aaf1835
    [7] CHENG K, GU B, LIU X, KANG J, ZHANG Q, WANG Y. Direct and highly selective conversion of synthesis gas into lower olefins:design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J]. Angew Chem Int Ed, 2016, 55(15):4725-4728. doi: 10.1002/anie.201601208
    [8] CHENG K, ZHOU W, KANG J, HE S, SHI S, ZHANG Q, PAN Y, WEN W, WANG Y. Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability[J]. Chem, 2017, 3(2):334-347. doi: 10.1016/j.chempr.2017.05.007
    [9] YANG J, PAN X, JIAO F, LI J, BAO X. Direct conversion of syngas to aromatics[J]. Chem Commun, 2017, 53(81):11146-11149. doi: 10.1039/C7CC04768A
    [10] ZHANG P, TAN L, YANG G, TSUBAKI N. One-pass selective conversion of syngas to paraxylene[J]. Chem Sci, 2017, 8(12):7941-7946. doi: 10.1039/C7SC03427J
    [11] HOFF T C, THILAKARATNE R, GARDNER D W, BROWN R C, TESSONNIER J-P. Thermal stability of aluminum-rich ZSM-5 zeolites and consequences on aromatization reactions[J]. J Phys Chem C, 2016, 120(36):20103-20113. doi: 10.1021/acs.jpcc.6b04671
    [12] PÉREZ-URIARTE P, GAMERO M, ATEKA A, DÍAZ M, AGUAYO A T, BILBAO J. Effect of the acidity of HZSM-5 zeolite and the binder in the DME transformation to olefins[J]. Ind Eng Chem Res, 2016, 55(6):1513-1521. doi: 10.1021/acs.iecr.5b04477
    [13] BORTNOVSKY O, SAZAMA P, WICHTERLOVA B. Cracking of pentenes to C2-4 light olefins over zeolites and zeotypes role of topology and acid site strength and concentration[J]. Appl Catal A:Gen, 2005, 287(2):203-213. doi: 10.1016/j.apcata.2005.03.037
  • 加载中
图(7) / 表(6)
计量
  • 文章访问数:  106
  • HTML全文浏览量:  27
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-02
  • 修回日期:  2018-07-06
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-10-10

目录

    /

    返回文章
    返回