留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

N-叔丁基-α-苯基硝酮对纤维素超临界乙醇液化产物分布的影响

黎巍 汤楚翘 解新安 李雁 李璐 孙娇 樊荻 魏星

黎巍, 汤楚翘, 解新安, 李雁, 李璐, 孙娇, 樊荻, 魏星. N-叔丁基-α-苯基硝酮对纤维素超临界乙醇液化产物分布的影响[J]. 燃料化学学报(中英文), 2017, 45(1): 55-64.
引用本文: 黎巍, 汤楚翘, 解新安, 李雁, 李璐, 孙娇, 樊荻, 魏星. N-叔丁基-α-苯基硝酮对纤维素超临界乙醇液化产物分布的影响[J]. 燃料化学学报(中英文), 2017, 45(1): 55-64.
LI Wei, TANG Chu-qiao, XIE Xin-an, LI Yan, LI Lu, SUN Jiao, FAN Di, WEI Xing. Effects of N-tert-butyl-α-phenylnitrone on the product distribution of cellulose liquefaction in supercritical ethanol[J]. Journal of Fuel Chemistry and Technology, 2017, 45(1): 55-64.
Citation: LI Wei, TANG Chu-qiao, XIE Xin-an, LI Yan, LI Lu, SUN Jiao, FAN Di, WEI Xing. Effects of N-tert-butyl-α-phenylnitrone on the product distribution of cellulose liquefaction in supercritical ethanol[J]. Journal of Fuel Chemistry and Technology, 2017, 45(1): 55-64.

N-叔丁基-α-苯基硝酮对纤维素超临界乙醇液化产物分布的影响

基金项目: 

国家自然科学基金 21576107

国家自然科学基金 21176097

广东省科技计划项目 2014A010106024

详细信息
    通讯作者:

    解新安, Tel:020-8528 0266, E-mail:xinanxie@scau.edu.cn

  • 中图分类号: TK6

Effects of N-tert-butyl-α-phenylnitrone on the product distribution of cellulose liquefaction in supercritical ethanol

Funds: 

National Natural Science Foundation of China 21576107

National Natural Science Foundation of China 21176097

and Guangdong Provincial Science and Technology Program Foundation of China 2014A010106024

  • 摘要:N-叔丁基-α-苯基硝酮(PBN)为自由基结合剂,采用间歇式高温高压反应釜对玉米秸秆纤维素进行超临界乙醇液化,考察PBN用量(浓度)和反应温度(活性)对纤维素液化产物及生物油中主要化合物分布的影响。结果表明,在320℃,仅有超临界乙醇作用,生物油收率为37.17%,挥发分收率高达50.08%;随着PBN用量增加到0.4 g,生物油收率最高提升至48.35%,挥发分最低下降到35.65%。在超临界乙醇和PBN作用下,随着反应温度从250℃升高至340℃,纤维素转化率从23.10%急剧增加至88.92%,生物油收率从19.18%上升到最高48.35%(320℃)后略有下降,挥发分也从6.03%急剧上升至50.28%。GC-MS结果显示,酯类、酮类、烃类、醇类、酸类及苯类化合物是生物油的主要成分,各组分的最高相对含量分别为27.91%、15.77%、13.44%、12.42%、16.07%、19.81%。实验结果证实了PBN对纤维素超临界乙醇液化产物及生物油组分分布产生了较明显的影响,尤其能通过与含苯基、乙基等活性碎片结合促进挥发分与生物油之间的转化,且PBN用量及液化温度的改变可以促使生物油中主要化合物发生不同程度的相互转化。
  • 图  1  PBN的化学结构示意图

    Figure  1  Chemical structure of PBN

    图  2  纤维素超临界乙醇/PBN液化实验流程示意图

    Figure  2  Procedures for the liquefaction of cellulose in supercritical ethanol with PBN (gas products, GAS; bio-oil, BO; residue, RE)

    图  3  不同PBN用量下纤维素转化率及液化产物收率

    Figure  3  Effect of the PBN dosage on the yields of various products & conversion rate for cellulose liquefaction in 100 mL ethanol under 8.6-9.6 MPa and 320 ℃ for 60 min

    图  4  不同PBN用量下纤维素液化残渣的FT-IR谱图

    Figure  4  FT-IR analysis for RE obtained from cellulose liquefaction with various dosage of PBN in 100 mL ethanol under 8.6-9.6 MPa and 320 ℃ for 60 min

    a: 0 g; b: 0.1 g; c: 0.2 g; d: 0.3 g; e: 0.4 g absorption peak[25-27]: 1 060-1 160 cm-1 C-O-C; 1 680-1 715 cm-1 -C=O; 1 710-1 770 cm-1 -COOH; 2 900-3 100 cm-1 -C-H; 3 300-3 600 cm-1 -O-H

    图  5  不同反应温度下纤维素转化率及液化产物收率

    Figure  5  Effect of reaction temperature on the yields of various products & conversion rate of cellulose liquefaction in 100 mL ethanol and 0.2 g PBN under 6.4-10.2 MPa for 60 min

    图  6  不同反应温度下纤维素液化残渣的FT-IR谱图

    Figure  6  FT-IR analysis for RE obtained from cellulose liquefaction with various reaction temperatures in 100 mL ethanol and 0.2 g PBN under 6.4-10.2 MPa for 60 min

    a: 250 ℃; b: 280 ℃; c: 300 ℃; d: 320 ℃; e: 340 ℃ absorption peak: 1 060-1 160 cm-1 C-O-C; 1 680-1 715 cm-1 -C=O; 1 710-1 770 cm-1 -COOH; 2 900-3 100 cm-1 -C-H; 3 300-3 600 cm-1 -O-H

    图  7  不同PBN用量生物油中主要化合物的相对含量

    Figure  7  Relative contents of dominant compounds in BO with various dosage of PBN for cellulose liquefaction in 100 mL ethanol under 8.6-9.6 MPa and 320 ℃ for 60 min

    表  1  不同PBN用量下纤维素超临界乙醇液化生物油产物GC-MS分析

    Table  1  GC-MS analysis for BO with various dosage of PBN for cellulose liquefaction in 100 mL ethanol under 8.6-9.6 MPa and 320 ℃ for 60 min

    RT
    t/min
    Name of compoundsFormulaArea/%
    0.1 g0.2 g0.3 g0.4 g
    Esters
    5.335propanoic acid, 2-hydroxy-2-methyl-, ethyl esterC6H12O30.27-0.210.17
    5.8672-butenoic acid, ethyl ester, (E)-C6H10O22.091.992.192.76
    6.054pentanoic acid, propyl esterC8H16O20.290.27--
    6.065butanoic acid, 2-methyl-, ethyl esterC7H14O2--0.150.32
    7.552tetrahydrofurfuryl acrylateC8H12O30.480.50--
    7.7372-propenoic acid, butyl esterC7H12O20.700.660.740.58
    7.845ethyl 2-methyl cyclopropanecarboxylateC7H12O20.190.180.21-
    7.904octanoic acid, ethyl esterC10H20O20.890.80--
    7.911pentanoic acid, ethyl esterC7H14O2--0.831.07
    8.045butanoic acid, 2-hydroxy-, ethyl esterC6H12O34.064.05--
    8.405acetic acid, ethoxy-, ethyl esterC6H12O30.830.660.440.87
    8.6534-pentenoic acid, ethyl esterC7H12O20.580.620.620.61
    8.717propanoic acid, 2-(1-ethoxyethoxy)-, ethyl esterC9H18O4-2.42--
    9.252ethyl tiglateC7H12O20.190.210.180.12
    9.567ethyl trans-2-pentenoateC7H12O20.390.370.350.38
    10.096butanoic acid, 2-hydroxy-3-methyl-, ethyl esterC7H14O30.410.390.500.32
    13.196pentanoic acid, 4-oxo-, ethyl esterC7H12O30.600.710.410.29
    13.292ethyl 2, 4-dioxovalerateC7H10O40.520.50--
    14.009pentanoic acid, 2-methyl-4-oxo-, ethyl esterC8H14O30.230.18--
    14.136ethyl dl-2-hydroxycaproateC8H16O30.430.390.320.35
    14.281isophytol, acetateC22H42O2-0.640.41-
    15.4082-(2-methylpropenyl) cyclopropanecarboxylicC18H30O21.181.211.060.84
    acid, 2-isopropyl-5-methyl-cyclohexyl ester
    16.120benzoic acid, ethyl esterC9H10O20.290.340.500.46
    16.454butanedioic acid, diethyl esterC8H14O40.770.690.50-
    16.5415-keto-2, 2-dimethylheptanoic acid, ethyl (ester)C11H20O30.33-0.530.35
    17.119diethyl methyl succinateC9H16O41.061.010.830.73
    17.6502-propenoic acid, 6-methylheptyl esterC11H20O20.230.320.350.41
    17.905diethyl malonic acid, 4-methoxyphenyl pentyl esterC19H28O5--0.180.38
    18.057benzeneacetic acid, ethyl esterC10H12O2-0.370.35-
    18.670hexanoic acid, 3-oxo-, ethyl esterC8H14O30.540.480.27-
    19.022pentanedioic acid, diethyl esterC9H16O40.910.960.410.52
    19.168hexanedioic acid, monoethyl esterC8H14O41.141.120.320.67
    19.842pentanoic acid, 3, 4, 4-trimethyl-, ethyl esterC10H20O20.580.62--
    20.630benzenepropanoic acid, ethyl esterC11H14O2-0.160.180.15
    20.967diethyl pimelateC11H20O40.540.620.30-
    21.854oxalic acid, bis (6-ethyloct-3-yl) esterC22H42O40.140.69-0.17
    22.0102, 4-pentadienoic acid, 3, 4-dimethyl-, isopropyl esterC10H16O2--0.180.23
    22.1784-(4-methoxycarbonylbutyl)-4-butanolideC10H16O4--0.270.38
    22.527cyclopropanecarboxylic acid, 2, 2-dimethyl-C11H18O20.23-0.18-
    3-(2-propenyl)-, ethyl ester, trans-
    26.994benzenepropanoic acid, 3, 5-bis (1, 1-dimethylethyl)-C18H28O30.21--0.17
    4-hydroxy-, methyl ester
    27.061l-(+)-ascorbic acid 2, 6-dihexadecanoateC38H68O80.580.620.320.52
    27.289hexadecanoic acid, ethyl esterC18H36O21.081.211.541.19
    28.0249-octadecenoic acid (Z)-, octadecyl esterC36H70O2--0.41-
    29.031octacosyl acetateC30H60O21.140.180.30-
    34.003bis (2-ethylhexyl) phthalateC24H38O40.560.530.800.81
    Ketones
    5.5712-cyclopenten-1-oneC5H6O0.500.550.320.44
    5.640cyclopentanone, 2-methyl-C6H10O0.720.730.800.93
    5.7612-pentanone, 4-hydroxy-4-methyl-C6H12O23.813.825.416.76
    7.560cyclohexanoneC8H14O--0.470.52
    8.335ethanone, 1-(2-furanyl)-C6H6O20.230.250.24-
    9.106cyclopentanone, 2-ethyl-C7H12O0.190.210.210.55
    9.1702-cyclopenten-1-one, 2, 3-dimethyl-C7H10O0.601.350.950.75
    11.083cyclohexanone, 3-ethyl-C8H14O0.17-0.240.15
    12.1552-cyclopenten-1-one, 2-hydroxy-3-methyl-C6H8O2-0.660.27-
    12.9352-cyclopenten-1-one, 3-ethyl-2-hydroxy-C7H10O21.241.921.510.93
    13.1252-cyclopenten-1-one, 3, 4, 4-trimethyl-C8H12O0.35--0.26
    13.4962-acetylcyclopentanoneC7H10O20.23-0.21-
    15.5061, 3-cyclopentanedione, 2-ethyl-2-methyl-C8H12O21.721.831.80-
    17.7702-cyclohexen-1-one, 2-hydroxy-3-C10H16O21.721.921.711.13
    methyl-6-(1-methylethyl)-
    18.5901(2H)-naphthalenone, 2-(1, 1-dimethylethyl)-C14H18O0.83---
    3, 4-dihydro-
    24.455benzophenoneC13H10O-0.32--
    26.8647, 9-di-tert-butyl-1-oxaspiro (4, 5) deca-6C17H24O30.290.230.180.29
    9-diene-2, 8-dione
    Alkanes
    7.4504-octene, (E)-C8H160.230.180.240.17
    8.714ethane, 1, 1-diethoxy-C6H14O23.00-2.102.26
    9.7012-methyl-2-octeneC9H180.25--0.15
    10.887cyclohexene, 4, 4-dimethyl-C8H14-0.270.15-
    12.872dodecane, 4, 6-dimethyl-C14H300.600.621.001.07
    15.123cyclohexane, (1-methylethylidene)-C9H16-0.270.27-
    16.6201-dodeceneC12H240.37--0.32
    18.475nonadecane, 9-methyl-C20H420.14-0.420.26
    18.907heptadecane, 8-methyl-C18H380.810.750.150.20
    19.295nonane, 3-methyl-5-propyl-C13H280.14-0.27-
    21.495tetradecaneC14H300.250.320.240.20
    21.852eicosaneC20H423.312.971.602.15
    22.280heptadecaneC18H380.390.410.32-
    22.409heneicosaneC21H440.891.231.211.39
    23.6292-methylhexacosaneC27H560.490.18-0.35
    24.017hexadecaneC16H340.330.180.18-
    24.235tetradecane, 4-methyl-C15H32-0.230.300.15
    24.503pentadecane, 2, 6, 10, 14-tetramethyl-C19H40-0.390.300.81
    24.599decane, 1, 1′-oxybis-C20H42O-0.300.270.35
    24.755undecane, 5-ethyl-5-propyl-C16H34-0.30-0.32
    24.861tetracontaneC44H900.21-0.38-
    24.863hexadecane, 2, 6, 10, 14-tetramethyl-C20H420.17--0.81
    25.3005, 5-diethylpentadecaneC19H40-0.250.21-
    25.515heptadecane, 2-methyl-C18H380.140.30-0.35
    26.8085, 5-diethylheptadecaneC21H440.460.590.500.35
    Alcohols
    7.6753-hexanol, 2-methyl-C7H16O0.144.304.193.89
    8.055o-menthan-8-olC10H20O--3.633.68
    8.170ethanol, 2-butoxy-C6H14O20.720.851.030.96
    11.1811, 2-pentanediolC5H12O24.41---
    12.345benzyl alcoholC7H8O0.211.030.891.10
    12.3974-nonanolC9H20O0.27-0.500.73
    13.2974-methyl-1, 6-heptadien-4-olC8H14O--0.470.32
    14.283cyclohexanol, 2-(1-methylethyl)-C9H18O0.62---
    16.3642H-pyran-2-methanol, tetrahydro-C6H12O2-1.07-0.81
    19.8494-heptanol, 2, 6-dimethyl-4-(1-methylethyl)-C12H26O--0.44-
    21.8581-dodecanol, 2-octyl-C20H42O0.170.210.530.29
    Acids
    8.365butanoic acid, 4-hydroxy-C4H8O30.210.27--
    9.7022-propenoic acid, 2-methyl-, 2-methylpropyl esterC8H14O2-0.160.27-
    12.0432-hexenoic acid, 3, 4, 4-trimethyl-5-oxo-, (Z)-C9H14O30.21-0.21-
    13.569butanoic acid, anhydrideC8H14O315.2815.4516.0715.64
    13.7322-oxopentanedioic acidC5H6O51.93-0.620.61
    28.612octadecanoic acidC18H36O20.140.180.18-
    Others
    5.0662-ethoxytetrahydrofuranC6H12O22.982.742.423.25
    8.2402H-pyran, 2-ethoxytetrahydro-C7H14O20.580.500.590.81
    8.390furan, tetrahydro-2-methyl-C5H10O--0.180.26
    18.2502, 2-diethoxytetrahydrofuranC8H16O30.210.230.18-
    9.869benzaldehydeC7H6O0.391.011.241.16
    16.364pentanal, 5-[(tetrahydro-2H-pyran-2-yl) oxy]-C10H18O31.28-1.18-
    18.784acrolein, 3-ethoxy-, diethyl acetalC9H18O30.430.48--
    21.658tridecanalC13H26O0.370.370.320.67
    13.110mequinolC7H8O2-0.37--
    15.635phenol, 2-ethoxy-C8H10O20.310.300.30-
    23.102phenol, 2, 4-bis (1, 1-dimethylethyl)-C14H22O1.281.261.031.45
    8.495benzene, (1-methylethyl)-C9H1211.0210.8114.9217.93
    10.476.alpha.-methylstyreneC9H100.480.460.680.75
    15.817benzene, [1-[[1-(1-methylethyl)-3-butenyl]oxy]ethyl]-C15H22O1.041.30-1.13
    -: not detected or less than 0.1%
    下载: 导出CSV
  • [1] 中国农业部/美国能源部.中国生物质资源可获得性评价[M].北京:中国环境科学出版社, 1998.

    Chinese Ministry of Agriculture & US Department Energy. Chinese Biomass Resources Availability Evaluation[M]. Beijing:China Environmental Science Press, 1998.
    [2] 宋春财, 王刚, 胡浩权.生物质热化学液化技术研究进展[J].太阳能学报, 2004, 25(2):242-248. http://www.cnki.com.cn/Article/CJFDTOTAL-TYLX200402022.htm

    SONG Chun-cai, WANG Gang, HU Hao-quan. Progress in thermochemical liquefaction of biomass[J]. Acta Energ Sol Sin, 2004, 25(2), 242-248. http://www.cnki.com.cn/Article/CJFDTOTAL-TYLX200402022.htm
    [3] 日本能源学会.生物质和生物能源手册[M].北京:化学工业出版社, 2007.

    Japan Institute of Energy. Manual of Biomass and Bioenergy[M]. Beijing:Chemical Industry Press, 2007.
    [4] 邓可蕴. 21世纪我国生物质能发展战略[J].中国电力, 2000, 33(9):82-84. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDL200009025.htm

    DENG Ke-yun. Development strategy of China's bio energy in 21st century[J]. Electr Power, 2000, 33(9):82-84. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDL200009025.htm
    [5] 骆仲泱, 周劲松, 王树荣, 余春江, 方梦祥, 岑可法.中国生物质能利用技术评价[J].中国能源, 2004, 26(9):39-42. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGLN200409013.htm

    LUO Zhong-yang, ZHOU Jin-song, WANG Shu-rong, YU Chun-jiang, FANG Meng-xiang, CEN Ke-fa. Review of the technologies of biomass energy utilization in China[J]. Energy China, 2004, 26(9):39-42. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGLN200409013.htm
    [6] 曹湘洪.我国生物能源产业健康发展的对策思考[J].化工进展, 2007, 26(7):905-913. http://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ200707002.htm

    CAO Xiang-hong. Thoughts on the countermeasures towards the healthy development of Chinese bio-energy industry[J]. Chem Ind Eng Prog, 2007, 26(7):905-913. http://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ200707002.htm
    [7] 国家自然科学基金委员会.国家自然科学基金"十三五"发展规划[Z]. 2016, 06.

    The National Natural Science Foundation of China. The National Natural Science Foundation of the "13th Five-Year" development plan[Z]. 2016, 06.
    [8] YAMAZAKI J, MINAMI E, SAKA S. Liquefaction of beech wood in various supercritical alcohols[J]. Wood Sci, 2006, 52(6):527-532. doi: 10.1007/s10086-005-0798-4
    [9] MAZAHERI H, LEE K T, BHATIA S, MOHAMED A R. Sub/supercritical liquefaction of oil palm fruit press fiber for the production of bio-oil:Effect of solvents[J]. Bioresour Technol, 2010, 101(19):7641-7647. doi: 10.1016/j.biortech.2010.04.072
    [10] 郑朝阳, 解新安, 陶红秀, 郑璐丝, 李雁.亚/超临界乙醇液化秸秆纤维素解聚反应研究与机理初探[J].燃料化学学报, 2012, 40(5):526-532. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17938.shtml

    ZHENG Chao-yang, XIE Xin-an, TAO Hong-xiu, ZHENG Lu-si, LI Yan. Depolymerization of stalk cellulose during its liquefaction in sub-and supercritical ethanol[J]. J Fuel Chem Technol, 2012, 40(5):526-532. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17938.shtml
    [11] 陶红秀, 解新安, 郑朝阳, 汤成正, 战晓青.玉米秸秆纤维素在亚/超临界乙醇中的液化行为研究[J].西北农林科技大学学报(自然科学版), 2014, 42(1):196-204. http://www.cnki.com.cn/Article/CJFDTOTAL-XBNY201401031.htm

    TAO Hong-xiu, XIE Xin-an, ZHENG Chao-yang, ZHAN Xiao-qing. Liquefaction of cornstalk cellulose in sub/super-critical ethanol[J]. J Northwest Univ A&F (Nat Sci Ed), 2014, 42(1):196-204. http://www.cnki.com.cn/Article/CJFDTOTAL-XBNY201401031.htm
    [12] 陈晓菲.稻秆粉末醇解产物的分析和醇解机理研究[D].武汉:武汉科技大学, 2008.

    CHEN Xiao-fei. Analysis of the products from alkanolysis of the rice-stalk powder and related mechanism study[D].Wuhan:Wuhan University of Science and Technology, 2008.
    [13] MURNIEKS R, KAMPARS V, MALINS K, APSENIECE L. Hydrotreating of wheat straw in toluene and ethanol[J]. Bioresour Technol, 2014, 163:106-111. doi: 10.1016/j.biortech.2014.04.022
    [14] 唐仕荣.玉米秆超临界乙醇解聚产物分析[J].安徽农业科学, 2009, 37(11):4869-4870. http://www.cnki.com.cn/Article/CJFDTOTAL-AHNY200911014.htm

    TANG Shi-rong. Analysis of depolymerization product of cornstalk in supercritical ethanol[J]. J Anhui Agri Sci, 2009, 37(11):4869-4870. http://www.cnki.com.cn/Article/CJFDTOTAL-AHNY200911014.htm
    [15] ZHENG C, TAO H, XIE X. Distribution and characterizations of liquefaction of celluloses in sub-and super-critical ethanol[J]. Bioresour, 2013, 8(1):648-662. https://www.researchgate.net/publication/270503466_Distribution_and_Characterizations_of_Liquefaction_of_Celluloses_in_Sub-_and_Super-Critical_Ethanol
    [16] 朱明江.自旋捕捉剂修饰及生物学效应研究[D].浙江:浙江大学, 2010.

    ZHU Ming-jiang. The modificatios of spin trappers and their application in vivo[D]. Zhejiang:Zhejiang University, 2010.
    [17] 刘扬, 徐广智, 赵瑶兴, 孙祥玉.电极过程自由基中间体的ESR研究-取代苯基重氮盐的电解还原[J].波谱学杂志, 1987, 4(1):29-33. http://www.cnki.com.cn/Article/CJFDTOTAL-PPXZ198701006.htm

    LIU Yang, XU Guang-zhi, ZHAO Yao-xing, SUN Xiang-yu. ESR study of the ferr radical intermediates formed during the electrolytic process-electrolytic reduction of substituted phenyldiazonium salts[J]. Chin J Magn Reson, 1987, 4(1):29-33. http://www.cnki.com.cn/Article/CJFDTOTAL-PPXZ198701006.htm
    [18] 刘扬, 徐广智, 赵瑶兴, 孙祥玉.甲苯基重氮盐及其与冠醚络合物光解活泼自由基的ESR研究[J].物理化学学报, 1989, 5(2):135-140. http://www.cnki.com.cn/Article/CJFDTOTAL-WLHX198902001.htm

    LIU Yang, XU Guang-zhi, ZHAO Yao-xing, SUN Xiang-yu.ESR study on the free radical intermediates formed during the photolysis of methyl[J]. Acta Phys-Chim Sin, 1989, 5(2):135-140. http://www.cnki.com.cn/Article/CJFDTOTAL-WLHX198902001.htm
    [19] 黄忠喜.负载钴催化剂催化原子转移自由基聚合研究[D].上海:上海交通大学, 2008.

    HUANG Zhong-xi. Atom transfer radical polymerization catalyzed by immobilized cobalt catalyst[D].Shanghai:Shanghai Jiaotong University, 2008.
    [20] 魏巍, 解新安, 汤成正, 李雁, 李璐, 王娅莉, 魏星, 樊荻.亚/超临界乙醇中烃基和氢自由基作用下的纤维素液化行为[J].燃料化学学报, 2016, 44(4):415-421. doi: 10.1016/S1872-5813(16)30021-4

    LI Wei, XIE Xin-an, TANG Cheng-zheng, LI Yan, LI Lu, WANG Ya-li, WEI Xing, FAN Di. Effects of hydroxyl and hydrogen free radicals on the liquefaction of cellulose in sub/supercritical ethanol[J]. J Fuel Chem Technol, 2016, 44(4):415-421. doi: 10.1016/S1872-5813(16)30021-4
    [21] GB/T 2677.1, 造纸原料分析用试样的采取[S].

    GB/T 2677.1, Fibrous raw material of sampling for analysis[S].
    [22] GB/T 2677.10-95, 造纸原料综纤维素含量的测定[S].

    GB/T 2677.10-95, Fibrous raw material-determination of holocellulose[S].
    [23] GUO Z, BAI Z, BAI J, WANG Z, LI W. Co-liquefaction of lignite and sawdust under syngas[J]. Fuel Process Technol, 2011, 92(1):119-125. doi: 10.1016/j.fuproc.2010.09.014
    [24] 邵千钧, 彭锦星, 修树东, 文先红.竹子在超临界甲醇中的热解油产物分析[J].太阳能学报, 2007, 28(9):984-987. http://www.cnki.com.cn/Article/CJFDTOTAL-TYLX200709011.htm

    SHAO Qian-jun, PENG Jin-xing, XIU Shu-dong, WEN Xian-hong. Analysis of oil products by pyrolysis of bamboo in supercritical methanol[J]. Acta Energ Sol Sin, 2007, 28(9):984-987. http://www.cnki.com.cn/Article/CJFDTOTAL-TYLX200709011.htm
    [25] SHARYPOV V I, KUZNETSOV B N. Catalytic hydroliquefaction of barzass liptobiolitic coal in a petroleum residue as a solvent[J]. Fuel, 2006, 85(7):918-922. https://www.researchgate.net/profile/A_Startsev/publication/239142291_Catalytic_hydroliquefaction_of_Barzass_liptobiolitic_coal_in_a_petroleum_residue_as_a_solvent/links/558e189f08ae47a3490bdf8c.pdf?inViewer=0&pdfJsDownload=0&origin=publication_detail
    [26] PÜTÜN A E, ÖZCAN A, PÜTÜN E. Pyrolysis of hazelnut shells in a fixed-bed tubular reactor:Yields and structural analysis of bio-oil[J]. J Anal Appl Pyrolysis, 1999, 52(1):33-49. doi: 10.1016/S0165-2370(99)00044-3
    [27] 武景丽, 汪丛伟, 阴秀丽, 吴创之, 马隆龙, 周肇秋, 陈汉平.基于TG-FTIR的生物油重质组分热解特性研究[J].太阳能学报, 2010, 31(1):113-117. http://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201001023.htm

    WU Jing-li, WANG Cong-wei, YIN Xiu-li, WU Chuang-zhi, MA Long-long, ZHOU Zhao-qiu, CHEN Han-ping. Study on pyrolysis of heavy fractions of bio-oil by using TG-FTIR analysis[J]. Acta Energ Sol Sin, 2010, 31(1):113-117. http://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201001023.htm
    [28] SOARES S, RICARDO N M P S, JONES S, HEATLEY F. High temperature thermal degradation of cellulose in air studied using FTIR and 1H and 13C solid-state NMR[J]. Eur Polym J, 2001, 37(4):737-745. doi: 10.1016/S0014-3057(00)00181-6
    [29] TANG C, TAO H, ZHAN X, XIE X. Mechanism of esters formation during cellulose liquefaction in sub-and supercritical ethanol[J]. BioResources, 2014, 9(3):4946-4957.
    [30] 陶红秀, 解新安, 汤成正, 田文广.玉米秸秆纤维素在亚/超临界乙醇中液化生成酮类化合物的机理探讨[J].燃料化学学报, 2013, 41(1):60-66. doi: 10.1016/S1872-5813(13)60010-9

    TAO Hong-xiu, XIE Xin-an, TANG Cheng-zheng, TIAN Wen-guang. Mechanism of ketones formation from cellulose liquefaction in sub-and supercritical ethanol[J]. J Fuel Chem Technol, 2013, 41(1):60-66. doi: 10.1016/S1872-5813(13)60010-9
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  78
  • HTML全文浏览量:  22
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-18
  • 修回日期:  2016-10-09
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-01-10

目录

    /

    返回文章
    返回