留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TiO2掺杂CuMnCe/Al2O3催化剂对甲烷催化燃烧脱氧反应的影响

袁善良 兰海 薄其飞 张彪 肖熙 蒋毅

袁善良, 兰海, 薄其飞, 张彪, 肖熙, 蒋毅. TiO2掺杂CuMnCe/Al2O3催化剂对甲烷催化燃烧脱氧反应的影响[J]. 燃料化学学报(中英文), 2017, 45(2): 243-248.
引用本文: 袁善良, 兰海, 薄其飞, 张彪, 肖熙, 蒋毅. TiO2掺杂CuMnCe/Al2O3催化剂对甲烷催化燃烧脱氧反应的影响[J]. 燃料化学学报(中英文), 2017, 45(2): 243-248.
YUAN Shan-liang, LAN Hai, BO Qi-fei, ZHANG Biao, XIAO Xi, JIANG Yi. Effect of TiO2 doping on methane catalytic combustion deoxidation of CuMnCe/Al2O3 catalyst[J]. Journal of Fuel Chemistry and Technology, 2017, 45(2): 243-248.
Citation: YUAN Shan-liang, LAN Hai, BO Qi-fei, ZHANG Biao, XIAO Xi, JIANG Yi. Effect of TiO2 doping on methane catalytic combustion deoxidation of CuMnCe/Al2O3 catalyst[J]. Journal of Fuel Chemistry and Technology, 2017, 45(2): 243-248.

TiO2掺杂CuMnCe/Al2O3催化剂对甲烷催化燃烧脱氧反应的影响

详细信息
    通讯作者:

    Tel:13678048407,E-mail:yjiang@cioc.ac.cn

  • 中图分类号: TQ426;TQ519

Effect of TiO2 doping on methane catalytic combustion deoxidation of CuMnCe/Al2O3 catalyst

  • 摘要: 以掺杂了不同TiO2含量的Al2O3作为载体,通过等体积浸渍法制备了一系列不同TiO2含量的CuMnCe/TiO2-Al2O3催化剂,用BET、H2-TPR、XRD和XPS表征技术对催化剂物理化学性质进行表征,并考察了催化剂在含甲烷气脱氧反应中的催化性能。结果表明,在载体中添加TiO2对催化剂活性组分的晶相结构和分散度没有明显影响;但有效改善了Al2O3载体抗烧结能力;增加了CuMnCe/Al2O3催化剂表面Ce3+/(Ce3++Ce4+)的相对含量,从而提高了活性氧的移动性,且使催化剂表面可氧化还原物种含量和表面吸附氧Osur/(Osur+Olatt)的含量增多。有效改善了催化剂在含甲烷气催化燃烧脱氧上的催化活性。其中,CuMnCe/4% TiO2-Al2O3表现出最优的催化活性,在387℃时可使含甲烷气中氧气的转化率达到100%。
  • 图  1  不同催化剂氧转化率随温度的变化

    Figure  1  Oxygen conversion vs reaction temperature over different catalysts

    ■: CuMnCe/Al2O3; ●: CuMnCe/4%TiO2-Al2O3;▲: CuMnCe/8%TiO2-Al2O3

    图  2  CuMn2Ce1.5/xTiO2-Al2O3的XRD谱图

    Figure  2  XRD patterns of the CuMn2Ce1.5/xTiO2-Al2O3 catalysts

    a: CuMnCe/Al2O3; b: CuMnCe/4%TiO2-Al2O3; c: CuMnCe/8%TiO2-Al2O3

    图  3  不同催化剂的Ce 3d和O 1s XPS谱图

    Figure  3  Ce 3d and O 1s XPS spectra for diffent catalysts

    a: CuMnCe/Al2O3; b: CuMnCe/4%TiO2-Al2O3; c: CuMnCe/8%TiO2-Al2O3

    图  4  催化剂的H2-TPR谱图

    Figure  4  H2-TPR profiles of different catalysts

    a: CuMnCe/Al2O3; b: CuMnCe/4%TiO2-Al2O3; c: CuMnCe/8%TiO2-Al2O3

    表  1  载体的比表面积和孔结构特性

    Table  1  Surface area and pore characteristics of different support

    Sample Surface area
    A/(m2·g-1)
    Pore volume
    v/(mL·g-1)
    Average pore size
    d/nm
    Al2O3(450 ℃) 199.77 0.442 9 8.87
    Al2O3(600 ℃) 172.08 0.459 1 10.67
    Al2O3(800 ℃) 144.19 0.456 2 12.56
    TiO2-Al2O3 (450 ℃) 163.48 0.404 6 9.89
    TiO2-Al2O3 (600 ℃) 151.54 0.412 1 10.87
    TiO2-Al2O3 (800 ℃) 125.31 0.405 7 12.95
    下载: 导出CSV

    表  2  催化剂表面Ce3+以及Osur的含量和150-350 ℃ 的H2-TPR氢气消耗峰的面积

    Table  2  Ratio of Ce3+and Osur in the catalyst surface by XPS and relative H2 consumption peak area during H2-TPR experiment from 150 ℃ up to 350 ℃

    Sample Ce3+/( Ce3++ Ce4+)/%a Osur/(Osur+Olatt)/%a H2 consume(peak areab)
    CuMnCe/Al2O3 45.14 40.65 3 683
    CuMnCe/4%TiO2-Al2O3 46.28 41.95 4 421
    CuMnCe/8%TiO2-Al2O3 39.62 42.76 4 216
    a: calculated by XPS results; b: calculated by H2-TPR results
    下载: 导出CSV

    表  3  不同催化剂表相中各元素结合能及各组分的浓度

    Table  3  Content and binding energy on the surface of different catalysts

    Sample Binding energy E/eV Content of catalysts surface w/%
    Cu 2p3/2 Mn 2p3/2 O 1s Al 2p Cu Mn O Al
    CuMnCe/Al2O3 933.4 642.2 531.1 74.2 0.24 0.45 52.7 34.3
    CuMnCe/4%TiO2-Al2O3 933.2 641.8 531.1 74.2 0.38 0.59 52.1 34.4
    CuMnCe/8%TiO2-Al2O3 933.4 642.1 531.1 74.2 0.45 0.80 51.2 35.4
    下载: 导出CSV
  • [1] 吴剑峰, 孙兆虎, 公茂琼. 从含氧煤层气中安全分离提纯甲烷的工艺方法[J]. 天然气工业, 2009, 29(2):113-116+146.

    WU Jian-feng, SUN Zhao-hu, GONG Mao-qiong. Security technology of methane recovery from coalbed gas with oxygen[J]. Nat Gas Ind, 2009, 29(2):113-116+146.
    [2] 聂李红, 徐绍平, 苏艳敏, 刘淑琴. 低浓度煤层气提纯的研究现状[J]. 化工进展, 2008, 27(10):1505-1511+1521.

    NIE Li-hong, XU Shao-ping, SU Yan-min, LIU Shu-qin. Progress of recovery of low concentration coal bed methane[J]. Chem Ind Eng Prog, 2008, 27(10):1505-1511+1521.
    [3] 王树东, 袁中山, 王胜, 张纯希, 倪长军. 一种煤层气脱氧催化剂、其制备方法及应用:中国, 101664679B[P]. 2012-09-12.

    (WANG Shu-dong, YUAN Zhong-shan, WANG Sheng, ZHANG Chun-xi, NI Chang-jun. A preparation method and application of coal bed methane deoxygenation catalyst:CN, 101664679B[P]. 2012-09-12.)
    [4] 袁善良, 薄其飞, 蒋毅. 催化燃烧法用于煤层气脱氧的研究进展[J]. 天然气化工(C1化学与化工), 2016, 41(5):73-77.

    YUAN Shan-liang, BO Qi-fei, JIANG Yi. Reasearch advances in coalbed methane (CBM) deoxygeneration by catalytic combustion[J]. Nat Gas Chem Ind, 2016, 41(5):73-77.
    [5] OH S H, MITCHELL P J. Effects of rhodium addition on methane oxidation behavior of alumina-supported noble metal catalysts[J]. Appl Phys B, 1994, 5(1/2):165-179.
    [6] BURCH R, LOADER P K. Investigation of Pt/Al2O3 and Pd/Al2O3 catalysts for the combustion of methane at low concentrations[J]. Appl Phys B, 1994, 5(1):149-164.
    [7] LYUBOVSKY M, PFEFFERLE L. Methane combustion over the α, -alumina supported Pd catalyst:Activity of the mixed Pd/PdO state[J]. Appl Phys A, 1998, 179(1):107-119.
    [8] HAOJIE G, ZHONGQING Y, LI Z, JINGYU R, YANRONG C. Experimental and kinetic study of methane combustion with water over copper catalyst at low-temperature[J]. Energy Convers Manage, 2015, 103:244-250. doi: 10.1016/j.enconman.2015.06.076
    [9] HAOJIE G, ZHONGQING Y, LI Z, JINGYU R, YUNFEI Y, MINGNV G. Effects of O2/CH4 ratio on methane catalytic combustion over Cu/γ, -Al2O3 particles[J]. Int J Hydrogen Energy, 2016, 41(40):18282-18290. doi: 10.1016/j.ijhydene.2016.08.134
    [10] 唐国旗, 张春富, 孙长山, 严斌, 杨国祥, 戴伟, 田保亮. 活性氧化铝载体的研究进展[J]. 化工进展, 2011, 30(8):1756-1765.

    TANG Guo-qi, ZHANG Chun-fu, SUN Chang-shan, YAN Bin, YANG Guo-xiang, DAI Wei, TIAN Bao-liang. Research progress of γ, -alumina support[J]. Chem Ind Eng Prog, 2011, 30(8):1756-1765.
    [11] MATAM S K, AGUIRRE M H, WEIDENKAFF A, FERRI D. Revisiting the problem of active sites for methane combustion on Pd/Al2O3 by operando XANES in a lab-scale fixed-bed reactor[J]. J Phys Chem C, 2010, 114(20):9439-9443. doi: 10.1021/jp1019697
    [12] BRAGA V S, DIAS J A, DIAS S C L, DE MACEDO J L. Catalyst materials based on Nb2O5 supported on SiO2-Al2O3:Preparation and structural characterization[J]. Chem Mater, 2005, 17(3):690-695. doi: 10.1021/cm048673u
    [13] ESCOBAR J, ANTONIO DE LOS REYES J, VIVEROS T. Nickel on TiO2-modified Al2O3 sol-gel oxides:Effect of synthesis parameters on the supported phase properties[J]. Appl Phys A, 2003, 253(1):151-163.
    [14] WANG L, HUANG M, LI B, DONG L, JIN G, GAO J, MA J, LIU T. Enhanced hydrothermal stability and oxygen storage capacity of La3+ doped CeO2-γ, -Al2O3 intergrowth mixed oxides[J]. Ceram Int, 2015, 41(10, Part A):12988-12995. doi: 10.1016/j.ceramint.2015.06.142
    [15] RODSEANGLUNG T, RATANA T, PHONGAKSORN M, TUNGKAMANIA S. Effect of TiO2 Incorporated with Al2O3 on the hydrodeoxygenation and hydrodenitrogenation CoMo sulfide catalysts[J]. Energy Procedia, 2015, 79:378-384. doi: 10.1016/j.egypro.2015.11.506
    [16] LARTIGUE KORINEK S, LEGROS C, CARRY C, HERBST F. Titanium effect on phase transformation and sintering behavior of transition alumina[J]. J Eur Ceram Soc, 2006, 26(12):2219-2230. doi: 10.1016/j.jeurceramsoc.2005.04.006
    [17] REDDY B M, KHAN A, YAMADA Y, KOBAYASHI T, LORIDANT S, VOLTA J C. Structural characterization of CeO2-TiO2 and V2O5/CeO2-TiO2 catalysts by Raman and XPS techniques[J]. J Phys Chem B, 2003, 107(22):5162-5167. doi: 10.1021/jp0344601
    [18] WANG H, CHEN X, GAO S, WU Z, LIU Y, WENG X. Deactivation mechanism of Ce/TiO2 selective catalytic reduction catalysts by the loading of sodium and calcium salts[J]. Catal Sci Technol, 2013, 3(3):715-722. doi: 10.1039/C2CY20568H
    [19] LIOTTA L F, DI CARLO G, PANTALEO G, VENEZIA A M, DEGANELLO G. Co3O4/CeO2 composite oxides for methane emissions abatement:Relationship between Co3O4-CeO2 interaction and catalytic activity[J]. Appl Phys B, 2006, 66(3/4):217-227.
    [20] LU H, KONG X, HUANG H, ZHOU Y, CHEN Y. Cu-Mn-Ce ternary mixed-oxide catalysts for catalytic combustion of toluene[J]. J Environ Sci, 2015, 32:102-107. doi: 10.1016/j.jes.2014.11.015
    [21] TANG X, XU Y, SHEN W. Promoting effect of copper on the catalytic activity of MnOx, -CeO2 mixed oxide for complete oxidation of benzene[J]. Chem Eng J, 2008, 144(2):175-180. doi: 10.1016/j.cej.2008.01.016
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  87
  • HTML全文浏览量:  31
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-10
  • 修回日期:  2016-12-23
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-02-10

目录

    /

    返回文章
    返回