留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Constructions of coal and char molecular models based on the molecular simulation technology

LEI Zhao YANG Ding ZHANG Yun-he CUI Ping

雷昭, 杨鼎, 张云鹤, 崔平. 基于分子模拟技术煤焦分子模型构建[J]. 燃料化学学报(中英文), 2017, 45(7): 769-779.
引用本文: 雷昭, 杨鼎, 张云鹤, 崔平. 基于分子模拟技术煤焦分子模型构建[J]. 燃料化学学报(中英文), 2017, 45(7): 769-779.
LEI Zhao, YANG Ding, ZHANG Yun-he, CUI Ping. Constructions of coal and char molecular models based on the molecular simulation technology[J]. Journal of Fuel Chemistry and Technology, 2017, 45(7): 769-779.
Citation: LEI Zhao, YANG Ding, ZHANG Yun-he, CUI Ping. Constructions of coal and char molecular models based on the molecular simulation technology[J]. Journal of Fuel Chemistry and Technology, 2017, 45(7): 769-779.

基于分子模拟技术煤焦分子模型构建

基金项目: 

the National Natural Science Foundation of China 21476001

Key Project of Anhui Provincial Department of Education KJ2017A045

the Open Fund of Shaanxi Key Laboratory of Energy Chemical Process Intensification SXECPI201601

详细信息
  • 中图分类号: TQ530

Constructions of coal and char molecular models based on the molecular simulation technology

Funds: 

the National Natural Science Foundation of China 21476001

Key Project of Anhui Provincial Department of Education KJ2017A045

the Open Fund of Shaanxi Key Laboratory of Energy Chemical Process Intensification SXECPI201601

More Information
    Corresponding author: CUI Ping, Tel: +86-555-2311807, Fax: +86-555-2311552, E-mail: mhgcp@126.com
  • 摘要: 煤、焦是过程工业的重要原料。因此,有必要深入了解煤、焦分子结构以揭示其反应性。采用Materials Studio 7.0软件,从分子层次研究煤、焦的分子结构。根据已报道的文献,构建煤、焦的初始结构;基于分子力学原理对这些结构进行优化,使得模型物性与煤、焦物性相符;基于退火模拟算法对模型进行优化,从而使得模型密度、元素分析数据与真实值吻合;基于能量最小化原理,对煤、焦模型再次优化,从而获得其稳定、真实的分子构型。由计算结果发现,模型的估算密度、元素组成与已报道一致,说明构建的模型是有效、合理的;在模型优化过程中,相对于其他能量而言,库伦能和范德华能起着重要的作用。因此可以推断在煤、焦热加工过程中,弱键占据主要地位。另外,本文采用分子模拟技术构建煤、焦模型的方法对于构建其他复杂大分子结构有着重要的借鉴作用。
  • Figure  1  Main body of coal

    Figure  2  Functional group fragments of coal

    Figure  3  Functional group fragments contained in the char model

    Figure  4  Three-dimensional main body of coal before optimization (the meaning of gray, white, red, blue and yellow is C, H, O, N and S atom, respectively)

    Figure  5  Functional group fragments of coal before optimization

    (the meaning of gray, white, red, blue and yellow is C, H, O, N and S atom, respectively)

    Figure  6  Three-dimensional main body of coal after optimization (the meaning of gray, white, red, blue and yellow is C, H, O, N and S atom, respectively)

    Figure  7  Functional group fragments of coal after optimization

    (the meaning of gray, white, red, blue and yellow is C, H, O, N and S atom, respectively)

    Figure  8  Three-dimensional functional group fragments of char

    (the meaning of gray, white, red, blue and yellow is C, H, O, N and S atom, respectively)

    Figure  9  Coal model density

    Figure  10  Char model density

    Figure  11  Coal density and volume variation with time

    (a): relationships of density with simulation time; (b): relationships of volume with simulation time

    Figure  12  Char density and volume variation with time

    (a): relationships of density with simulation time; (b): relationships of volume with simulation time

    Figure  13  Comparison of potential energies of coal molecular model

    notes: Valence electron energy, EB is bond elastic energy; EA is bond angle energy; ET is torsion energy; EI is inverse energy; non bonding energy; EH is hydrogen bond energy; Evan is van der waals energy; EE is Coulomb energy

    Figure  14  Comparison of potential energies of char molecular model

    notes: Valence electron energy, EB is bond elastic energy, EA is bond angle energy; ET is torsion energy; EI is inverse energy; non bonding energy; EH is hydrogen bond energy; Evan is van der Waals energy; EE is Coulomb energy

    Table  1  Elements analyses of coal and char[24, 34, 35]

    Table  2  Molecule composition of coal molecular model

    Table  3  Elements analysis of simulated coal and char

  • [1] World Coal Association, Annual Energy Report[EB/OL]. http://www.worldcoal.org/coal/, (accessed 2011).
    [2] China Analysis Report. U. S. Energy Information Administration (EIA)[EB/OL]. http://www.eia.gov/countries/cab.cfm?fips=CH, (accessed March 28, 2013).
    [3] FLETCHER T H, SOLUM M S, GRANT D M, PUGMIRE R J. Chemical structure of char in the transition from devolatilization to combustion[J]. Energy Fuels, 1992, 6(5):643-650. doi: 10.1021/ef00035a016
    [4] YU J L, LUCAS J A, WALL T F. Formation of the structure of chars during devolatilization of pulverized coal and its thermoproperties:A review[J]. Prog Energy Combust Sci, 2007, 33(2):135-170. doi: 10.1016/j.pecs.2006.07.003
    [5] ZENG D, FLETCHER T H. Effects of pressure on coal pyrolysis and char morphology[J]. Energy Fuels, 2005, 19(5):1828-1838. doi: 10.1021/ef0500078
    [6] LU L M, SAHAJWALLA V, HARRIS D. Characteristics of chars prepared from various pulverized coals at different temperatures using drop-tube furnace[J]. Energy Fuels, 2000, 14(4):869-876. doi: 10.1021/ef990236s
    [7] YOSHIZAWA N, MARUYAMAMA K, YAMASHITA T, AKIMOTO A. Dependence of microscopic structure and swelling property of DTF chars upon heat-treatment temperature[J]. Fuel, 2006, 85(14):2064-2070. http://www.sciencedirect.com/science/article/pii/S0016236106001190
    [8] KIDENA K, MATSUMOTO K, KATSUYAMA M, MURATA S, NOMURA M. Development of aromatic ring size in bituminous coals during heat treatment in the plastic temperature range[J]. Fuel Process Technol, 2004, 85(8):827-835. http://www.sciencedirect.com/science/article/pii/S0378382003002881
    [9] KULAOTS I, HSU A, SUUBERG E M. The role of porosity in char combustion[J]. Proc Combust Inst, 2007, 31(2):1897-1903. doi: 10.1016/j.proci.2006.08.004
    [10] MATSUOKA K, AKAHANE T, ASO H, SHARMA A, TOMITA A. The size of polyaromatic layer of coal char estimated from elemental analysis data[J]. Fuel, 2008, 87(4):539-545. http://www.sciencedirect.com/science/article/pii/S0016236107001214
    [11] DAVIS K A, HURT R H, YANG N Y C, HEADLEY T J. Evolution of char chemistry, crystallinity, and ultrafine structure during pulverized-coal combustion[J]. Combust Flame, 1995, 100(1):31-40. http://www.sciencedirect.com/science/article/pii/001021809400062W
    [12] SHENG C. Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity[J]. Fuel, 2007, 86(15):2316-2324. doi: 10.1016/j.fuel.2007.01.029
    [13] CAI H Y, GUELL A J, CHATZAKIS I N, LIM J Y, DUGWELL D R, KANDIYOTI R. Combustion reactivity and morphological change in coal chars:Effect of pyrolysis temperature, heating rate and pressure[J]. Fuel, 1996, 75(1):15-24. doi: 10.1016/0016-2361(94)00192-8
    [14] HURT R H. Reactivity distributions and extinction phenomena in coal char combustion[J]. Energy Fuels, 1993, 7(6):721-733. doi: 10.1021/ef00042a005
    [15] LIU G S, NIKSA S. Coal conversion submodels for design applications at elevated pressures. Part Ⅱ. Char gasification[J]. Prog Energy Combust Sci, 2004, 30(6):679-717. doi: 10.1016/j.pecs.2004.08.001
    [16] SOLOMON P R, SERIO M A, SUUBERG E M. Coal pyrolysis:Experiments, kinetic rates and mechanisms[J]. Prog Energy Combust Sci, 1992, 18(2):133-220. doi: 10.1016/0360-1285(92)90021-R
    [17] RADOVIC L R, WALKER P L, JENKINS R G. Importance of catalyst dispersion in the gasification of lignite chars[J]. J Catal, 1983, 82(2):382-394. doi: 10.1016/0021-9517(83)90205-1
    [18] DOMAZETIS G, JAMES B D, LIESEGANG J. Computer molecular models of low-rank coal and char containing inorganic complexes[J]. J Mol Model, 2008, 14(7):581-597. doi: 10.1007/s00894-008-0309-9
    [19] DOMAZETIS G, JAMES B D, LIESEGANG J. High-level computer molecular modeling for low-rank coal containing metal complexes and iron-catalyzed steam gasification[J]. Energy Fuels, 2008, 22(6):3994-4005. doi: 10.1021/ef800457t
    [20] DOMAZETIS G, LIESEGANG J, JAMES B D. Studies of inorganics added to low-rank coals for catalytic gasification[J]. Fuel Process Technol, 2005, 86(5):463-486. doi: 10.1016/j.fuproc.2004.03.009
    [21] ZHANG Y, CHEN D Y, ZHANG D, ZHU X F. TG-FTIR analysis of bio-oil and its pyrolysis/gasification property[J]. J Fuel Chem Technol, 2012, 40(10):1194-1199. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18043.shtml
    [22] XU X Q, WANG Y G, CHEN Z D, BAI L, ZHANG K J, YANG S S, ZHANG S. Influence of cooling treatments on char microstructure and reactivity of Shengli brown coal[J]. J Fuel Chem Technol, 2015, 43(1):1-8. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18547.shtml
    [23] MATHEWS J P, van Duin A, CHAFFEE A. The utility of coal molecular models[J]. Fuel Process Technol, 2011, 92(4):718-728. doi: 10.1016/j.fuproc.2010.05.037
    [24] CASTRO-MARCANO F, KAMAT A M, RUSSO JR M F, van Duin A C T, MATHEWS J P. Combustion of an Illinois No.6 coal char simulated using an atomistic char representation and the ReaxFF reactive force field[J]. Combust Flame, 2012, 159:1272-1285. doi: 10.1016/j.combustflame.2011.10.022
    [25] STUART S J, TUTEIN A B, HARRISON J A. A reactive potential for hydrocarbons with intermolecular interactions[J]. J Chem Phys, 2000, 112(14):6472-6486. doi: 10.1063/1.481208
    [26] VAN DUIN A C T, DASGUPTA S, LORANT F, GODDARD W A. ReaxFF:A reactive force field for hydrocarbons[J]. J Phys Chem A, 2001, 105(41):9396-9409. doi: 10.1021/jp004368u
    [27] HUANG L P, KIEFFER J. Molecular dynamics study of cristobalite silica using a charge transfer three-body potential:Phase transformation and structural disorder[J]. J Chem Phys, 2003, 118(3):1487-1498. doi: 10.1063/1.1529684
    [28] VAN DUIN A C T, STRACHAN A, STEWMAN S, ZHANG Q S, XU X, GODDARD W A. ReaxFFSiO reactive force field for silicon and silicon oxide systems[J]. J Phys Chem A, 2003, 107(19):3803-3811. doi: 10.1021/jp0276303
    [29] VIOLI A. Modeling of soot particle inception in aromatic and aliphatic premixed flames[J]. Combust Flame, 2004, 139(4):279-287. doi: 10.1016/j.combustflame.2004.08.013
    [30] CHENOWETH K, VAN DUIN A C T, GODDARD W A. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation[J]. J Phys Chem A, 2008, 112(5):1040-1053. doi: 10.1021/jp709896w
    [31] ROGEL E, CARBOGNANI L. Density estimation of asphaltenes using molecular dynamics simulations[J]. Energy Fuels, 2003, 17(2):378-86. doi: 10.1021/ef020200r
    [32] TAKANOHASHI T, KAWASHIMA H. Construction of a model structure for upper freeport coal using 13C NMR chemical shift calculations[J]. Energy Fuels, 2002, 16:379-387. doi: 10.1021/ef0101154
    [33] Materials Studio Help, 2007[K]. Accelrys Software Inc. , San Diego, USA.
    [34] LEI Z, YANG B, WEI J. Improved inheritance algorithm for the assembly of coal fragments[J]. Ind Eng Chem Res, 2015, 50:12392-12399. doi: 10.1021/ie201715q
    [35] CHEN H, LI J, LEI Z, GE L. Microwave-assisted extraction of shenfu coal and its macromolecule structure[J]. Min Sci Technol, 2009, 19(1):19-24. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zhkd200901006&dbname=CJFD&dbcode=CJFQ
    [36] ZHENG M, LI X, LIU J, GUO L. Initial chemical reaction simulation of coal pyrolysis via ReaxFF molecular dynamics[J]. Energy Fuels, 2013, 27:2942-2951. doi: 10.1021/ef400143z
    [37] NOSÉ S. A unified formulation of the constant temperature molecular dynamics methods[J]. J Chem Phys, 1984, 81:511-519. doi: 10.1063/1.447334
    [38] ZHENG M, LI X, LIU J, WANG Z, GONG X, GUO L, SONG W. Pyrolysis of Liulin coal simulated by GPU-Based ReaxFF MD with chemin for matics analysis[J]. Energy Fuels, 2014, 28:522-534. doi: 10.1021/ef402140n
    [39] CHEREPANOV V B, CYR S L M, SOUTHERN B W. Metastable states of the potts glass[J]. J Phys A:Math Gen, 1992, 25(16):4347. doi: 10.1088/0305-4470/25/16/012
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  74
  • HTML全文浏览量:  23
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-18
  • 修回日期:  2017-04-27
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-07-10

目录

    /

    返回文章
    返回