留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Egyptian heavy vacuum gas oil hydrotreating over Co-Mo/CNT and Co-Mo/γ-Al2O3 catalysts

Ahmed W. Ahmed Hoda, S. El-Sheshtawy H.S. Mohamed Nadia, A. Zahran Asmaa, I.

Ahmed W., Ahmed Hoda, S., El-Sheshtawy H.S., Mohamed Nadia, A., Zahran Asmaa, I.. Egyptian heavy vacuum gas oil hydrotreating over Co-Mo/CNT and Co-Mo/γ-Al2O3 catalysts[J]. Journal of Fuel Chemistry and Technology, 2016, 44(7): 853-861.
Citation: Ahmed W., Ahmed Hoda, S., El-Sheshtawy H.S., Mohamed Nadia, A., Zahran Asmaa, I.. Egyptian heavy vacuum gas oil hydrotreating over Co-Mo/CNT and Co-Mo/γ-Al2O3 catalysts[J]. Journal of Fuel Chemistry and Technology, 2016, 44(7): 853-861.

详细信息
  • 中图分类号: O643

Egyptian heavy vacuum gas oil hydrotreating over Co-Mo/CNT and Co-Mo/γ-Al2O3 catalysts

More Information
    Corresponding author: W. Ahmed, Tel: +(202)22747847-2015, Fax: +(202)22747433, E-mail: Waelepri2@yahoo.com
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1  XRD patterns of different samples

    a: CNT; b: CoMoO/CNT; c: CoMoS/CNT; d: γ-Al2O3; e: CoMoO/γ-Al2O3; f: CoMoS/γ-Al2O3

    Figure  2  TEM images of (a) CNT, (b) S-CoMo/CNT, and (c) EDX of CoMo/CNT

    Figure  3  N2 adsorption/desorption isotherm (a) and particle size distribution (b) exhibited for pure catalyst

    a: CNT; b: CoMoO/CNT; c: CoMoS/CNT

    Figure  4  Laser Raman spectra of (a) CNT, (b) CoMoO/CNT, (c) S-CoMo/CNT

    Figure  5  Effect of catalyst/oil ratio of CoMoS/CNT on HVGO at 4 MPa, 350 ℃, 2 h

    Table  1  Properties of heavy vacuum gas oil feedstock

    Experiment Method Result
    Total sulfur content w/% ASTM D-4294 1.66
    Aniline point /°F ASTM D-611-82 74
    Diesel index /% ASTM D 611 46.09
    Total aromatics w/% - 34
    下载: 导出CSV

    Table  2  Physical properties of supports and CoMoX/support catalysts

    Sample BET surface area A/(m2·g-1) Total pore volume v/(cm3·g-1) Average pore diameter d/nm
    CNT 120.9 0.25 38.02
    CoMo/CNT 101.1 0.18 35.28
    CoMoS/CNT 73.58 0.12 32.57
    γ-Al2O3 137.2 0.19 27.7
    CoMo/ γ-Al2O3 113.3 0.16 28.8
    CoMoS/ γ-Al2O3 66.9 0.1 32.1
    下载: 导出CSV

    Table  3  Effect of reaction temperature on hydrotreating of HVGO by CoMoS/CNT at p=4 MPa, t=2 h and C/F=1:75

    Characteristy Feed 325 ℃ 350 ℃ 375 ℃
    CNT alumina CNT alumina CNT alumina
    Total liquid yield w/% - 83.66 82 78 80 54 75.66
    Total sulfur content w/% 1.66 0.64 0.82 0.38 0.76 0.34 0.61
    Sulfur reduction (HDS) /% - 61.4 50.6 77.1 54.21 79.26 63.25
    Aniline point /°F 165.2 170.24 166.28 170.6 167 171.32 168.26
    Diesel index (DI) /% 46.09 57.37 53.64 59.65 55.1 60.56 55.57
    Total aromatics w/% 34 25 29 21.5 26.5 17.6 25
    Hydrodearomatization (HDA) w/% - 26.47 14.7 36.76 22.05 48.23 26.47
    下载: 导出CSV

    Table  4  Effect of reaction pressure on hydrotreating of HVGO by CoMoS/CNT at t=350 ℃, t=2 h and C/F=1:75

    Characteristics Feed 2 MPa 4 MPa 6 MPa
    Total liquid yield w/% 150 85.33 78 72
    Total sulfur content w/% 1.66 0.66 0.38 0.34
    Sulfur reduction (HDS) /% - 60.24 77.1 79.5
    Aniline point /°F 165.2 169.7 170.6 172.4
    Total aromatics w/% 34 24 21.5 16.8
    Hydrodearomatization (HDA) w/% - 29.41 36.76 50.58
    下载: 导出CSV

    Table  5  Effect of reaction time on hydrotreating of HVGO by /CNT at p=40 MPa, t=350 ℃ and C/ F ratio=1:75

    Characteristy Feed 2 h 4 h 6 h
    Total liquid yield w/% 150 78 75.33 69.2
    Total sulfur content w/% 1.66 0.38 0.36 0.28
    Sulfur reduction (HDS) /% - 77.1 78.3 83.1
    Aniline point /°F 165.2 170.6 170.96 172.04
    Total aromatics w/% 34 21.5 18 16
    Hydrodearomatization (HDA) w/% - 36.76 47.05 52.94
    下载: 导出CSV
  • [1] TOPSФE H, CLAUSEN B S. Importance of Co-Mo-S type structures in hydrodesulfurization[J]. Catal Rev Sci Eng, 1984, 26(3/4): 395-420. https://www.researchgate.net/publication/233078708_Importance_of_Co-Mo-S_Type_Structures_in_Hydrodesulfurization
    [2] PRINS R, DE BEER V H J, SOMORJAI G A. Structure and function of the catalyst and the promoter in Co-Mo hydrodesulfurization catalysts[J].Catal Rev Sci Eng, 1989, 31(1/2): 1-41. https://www.researchgate.net/publication/239246431_Structure_and_Function_of_the_Catalyst_and_Promoter_in_Co-Mo_Hydrodesulfurization_Catalysts
    [3] MEDICI L, PRINS R. The influence of chelating ligands on the sulfidation of Ni and Mo in NiMo/SiO2 hydrotreating catalysts[J]. J Catal, 1996, 163(1): 38-49. doi: 10.1006/jcat.1996.0303
    [4] SHIMIZU T, HIROSHIMA K, HONMA T, MOCHIZUKI T, YAMADA M. Highly active hydrotreatment catalysts prepared with chelating agents[J].Catal today, 1998, 45(1/4): 271-276. https://www.researchgate.net/publication/237883166_Highly_active_hydrotreatment_catalysts_prepared_with_chelating_agents
    [5] VAN LOOIJ F, VAN DER LAAN P, STORK W H J, DICAMILLO D J, SWAIN J. Key parameters in deep hydrodesulfurization of diesel fuel[J].Appl Catal A: Gen, 1998, 170(1): 1-12. doi: 10.1016/S0926-860X(98)00028-3
    [6] SHIMADA H, SATO T, YOSHIMURA Y, HIRAISHI J, NISHIJIMA A. Support effect on the catalytic activity and properties of sulfided molybdenum catalysts[J].J Catal, 1988, 110(2): 275-284. doi: 10.1016/0021-9517(88)90319-3
    [7] VISHWAKARMA S K. Sonochemical and impregnated Co-W/γ-Al2O3 catalysts: Performances and kinetic studies on hydrotreatment of light gas oil[D].Saskatoon University of Saskatchewan, 2007.
    [8] TOPSФE H, CLAUSEN B S. Active sites and support effects in hydrodesulfurization catalysts[J].Appl Catal, 1986, 25(1/2): 273-293. https://www.researchgate.net/publication/232384475_Active_Sites_and_Support_Effects_in_Hydrodesulfurization_Catalysts
    [9] ESWARAMOORTHI I, SUNDARAMURTHY V, DAS N, DALAI A K, ADJAYE J. Application of multi-walled carbon nanotubes as efficient support to NiMo hydrotreating catalyst[J].Appl Catal A: Gen, 2008, 339(2): 187-195. doi: 10.1016/j.apcata.2008.01.021
    [10] SIGURDSON S, SUNDARAMURTHY V, DALAI A K, ADJAYE J. Effect of anodic alumina pore diameter variation on template-initiated synthesis of carbon nanotube catalyst supports[J].JMol Catal A: Chem, 2009, 306: 23-32. doi: 10.1016/j.molcata.2009.02.016
    [11] DHAR G M, SRINIVAS B N, RANA M S, KUMAR M, MAITY S K. Mixed oxide supported hydrodesulfurization catalysts-A review[J]. Catal Today, 2003, 86(1/4): 45-60. http://www.academia.edu/10095367/Mixed_oxide_supported_hydrodesulfurization_catalysts_a_review
    [12] WANG A, WANG Y, KABE T, CHEN Y, ISHIHARA A, QIAN W. Hydrodesulfurization of dibenzothiophene over siliceous MCM-41-supported catalysts: I. Sulfided Co-Mo catalysts[J]. J Catal, 2001, 199(1): 19-29. doi: 10.1006/jcat.2000.3148
    [13] MAITY S K, RANA M S, BEJ S K, ANCHEYTA-JUAREZ J, DHAR G M, RAO T S R P. Studies on physico-chemical characterization and catalysis on high surface area titania supported molybdenum hydrotreating catalysts[J]. Appl CatalA: Gen, 2001, 205(1/2): 215-225. https://www.researchgate.net/profile/Mohan_Rana/publication/223324302_Studies_on_Physico-Chemical_Characterization_and_Catalysis_on_High_Surface_Area_Titania_Supported_Molybdenum_Hydrotreating_Catalysts/links/00b49526f435e3ac3a000000.pdf?inViewer=true&pdfJsDownload=true&disableCoverPage=true&origin=publication_detail
    [14] VRADMAN L, LANDAU M V, HERSKOWITZ M, EZERSKY V, TALIANKER M, NIKITENKO S, KOLTYPIN Y, GEDANKEN A. High loading of short WS 2 slabs inside SBA-15: Promotion with nickel and performance in hydrodesulfurization and hydrogenation[J]. J Catal, 2003, 213(2): 163-175. doi: 10.1016/S0021-9517(02)00012-X
    [15] POUR A N, RASHIDI A M, JOZANI K J, MOHAJERI A, KHORAMI P. Support effects on the chemical property and catalytic activity of Co-Mo HDS catalyst in sulfur recovery[J]. J Nat Gas Chem, 2010, 19(1): 91-95. doi: 10.1016/S1003-9953(09)60032-3
    [16] SERP P, CORRIAS M, KALCK P. Carbon nanotubes and nanofibers in catalysis[J]. Appl Catal A: Gen, 2003, 253: 337-358. doi: 10.1016/S0926-860X(03)00549-0
    [17] VAN STEEN E, PRINSLOO F F. Comparison of preparation methods for carbon nanotubes supported iron Fischer-Tropsch catalysts[J].Catal Today, 2002, 71(3/4): 327-334. http://en.journals.sid.ir/Reference.aspx?ID=383523
    [18] AUER E, FREUND A, PIETSCH J, TACKE T. Carbons as supports for industrial precious metal catalysts[J]. Appl Catal A: Gen, 1998, 173(2): 259-271. doi: 10.1016/S0926-860X(98)00184-7
    [19] SHANG H Y, LIU C G, XU Y Q, ZHAO H J, SONG H H. Effect of the surface modification of multi-walled carbon nanotubes (MWCNTs) on hydrodesulfurization activity of Co-Mo/MWCNTs catalysts[J]. New Carbon Mater, 2004, 19(2): 131-136. https://www.researchgate.net/publication/283863470_Effect_of_the_surface_modification_of_multi-walled_carbon_nanotubes_MWCNTs_on_hydrodesulfurization_activity_of_Co-MoMWCNTs_catalysts
    [20] KYOTANI T, NAKAZAKI S, XU W-H, TOMITA A. Chemical modification of the inner walls of carbon nanotubes by HNO3 oxidation[J]. Carbon, 2001, 39(5): 782-785. doi: 10.1016/S0008-6223(01)00013-6
    [21] DONG K, ZHANG S, WANG D, YAO X. Hydrogen bonds in imidazolium ionic liquids[J]. J Phys Chem A, 2006, 110(31): 9775-9782. doi: 10.1021/jp054054c
    [22] SHANG H, LIU C, XU Y, QIU J, WEI F. States of carbon nanotube supported Mo-based HDS catalysts[J]. Fuel Process Technol, 2007, 88(2): 117-123. doi: 10.1016/j.fuproc.2004.08.010
    [23] AWADALLAH A E, ABOUL-ENEIN A A, EL-DESOUKI D S, ABOUL-GHEIT A K. Catalytic thermal decomposition of methane to COx-free hydrogen and carbon nanotubes over MgO supported bimetallic group Ⅷ catalysts[J]. ApplSurfSci, 2014, 296: 100-107.
    [24] SUNDARAMURTHY V, DALAI A K, ADJAYE J. Effect of EDTA on hydrotreating activity of CoMo/γ-Al2O3 catalyst[J]. CatalLett, 2005, 102(3): 299-306.
    [25] HOGG J C, CHU F, UTOKAPARCH S, WOODS R, ELLIOTT W M, BUZATU L, CHERNIACK R M, ROGERS R M, SCIURBA F C, COXSON H O, PARP D. The nature of small-airway obstruction in chronic obstructive pulmonary disease [J].N Engl J Med, 2004, 350: 2645-2653. doi: 10.1056/NEJMoa032158
    [26] SHIGAPOV A N, GRAHAM G W, MCCABE R W, PECK M P, PLUMMER H K. The preparation of high-surface-area cordierite monolith by acid treatment[J]. Appl Catal A: Gen, 1999, 182(1): 137-146. doi: 10.1016/S0926-860X(99)00003-4
    [27] TAN Z L, XIAO H N, ZHANG R D, ZHANG Z S, KALIAGUINE S. Potential to use mesoporous carbon as catalyst support for hydrodesulfurization[J]. New Carbon Mater, 2009, 24(4): 333-343. doi: 10.1016/S1872-5805(08)60056-6
    [28] ZHANG Y, ZHANG H B, LIN G D, CHEN P, YUAN Y Z, TSAI K R. Preparation, characterization and catalytic hydroformylation properties of carbon nanotubes-supported Rh-phosphine catalyst[J]. Appl Catal A: Gen, 1999, 187(2): 213-224. doi: 10.1016/S0926-860X(99)00229-X
    [29] DUJARDIN E, EBBESEN T W, HIURA H, TANIGAKI K. Capillarity and wetting of carbon nanotubes[J]. Science, 1994, 265(5180): 1850-1852. doi: 10.1126/science.265.5180.1850
    [30] DANDEKAR A, BAKER R T K, VANNICE M A. Characterization of activated carbon, graphitized carbon fibers and synthetic diamond powder using TPD and DRIFTS[J]. Carbon, 1998, 36(12): 1821-1831. doi: 10.1016/S0008-6223(98)00154-7
    [31] KARIMI A, NASERNEJAD B, RASHIDI A M. Synthesis and characterization of multiwall carbon nanotubes/alumina nanohybrid-supported cobalt catalyst in Fischer-Tropsch synthesis[J]. J Energy Chem, 2013, 22(4): 582-590. doi: 10.1016/S2095-4956(13)60076-5
    [32] TRÉPANIER M, TAVASOLI A, DALAI AK, ABATZOGLOU N. Fischer-Tropsch synthesis over carbon nanotubes supported cobalt catalysts in a fixed bed reactor: Influence of acid treatment[J]. Fuel Process Technol, 2009, 90(3): 367-374. doi: 10.1016/j.fuproc.2008.10.012
    [33] KARIMI A, NASERNEJAD B, RASHIDI A M, TAVASOLI A, POURKHALIL M. Functional group effect on carbon nanotube (CNT)-supported cobalt catalysts in Fischer-Tropsch synthesis activity, selectivity and stability[J]. Fuel, 2014, 117: 1045-1051. doi: 10.1016/j.fuel.2013.10.014
    [34] ABBASLOU R M M, TAVASSOLI A, SOLTAN J, DALAI A K. Iron catalysts supported on carbon nanotubes for Fischerâ Tropsch synthesis: Effect of catalytic site position[J]. Appl Catal A: Gen, 2009, 367(1/2): 47-52. https://www.researchgate.net/publication/229406473_Iron_catalysts_supported_on_carbon_nanotubes_for_Fischer-Tropsch_synthesis_Effect_of_catalytic_site_position
    [35] DRESSELHAUS M S, DRESSELHAUS G, JORIO A, SOUZA FILHO A G, SAITO R. Raman spectroscopy on isolated single wall carbon nanotubes[J]. Carbon, 2002, 40(12): 2043-2061. doi: 10.1016/S0008-6223(02)00066-0
    [36] LI Q, YAN H, ZHANG J, LIU Z. Effect of hydrocarbons precursors on the formation of carbon nanotubes in chemical vapor deposition[J]. Carbon, 2004, 42(4): 829-835. doi: 10.1016/j.carbon.2004.01.070
    [37] KOHLER S D, EKERDT J G, KIM D S, WACHS I E. Relationship between structure and point of zero surface charge for molybdenum and tungsten oxides supported on alumina[J]. Catal Lett, 1992, 16(3): 231-239. doi: 10.1007/BF00764335
    [38] JEZIOROWSKI H, KNOZINGER H, GRANGE P, GAJARDO P. Raman spectra of cobalt molybdenum oxide supported on silica[J]. J Phys Chem, 1980, 84: 1825-1829. doi: 10.1021/j100451a017
    [39] GARY J H, HANDWERK G E, KAISER M J. Petroleum refining: Technology and economics[C]. Boca Raton: CRC Press, 2007.
    [40] BARTHOLOMEW C H. Catalyst deactivation in hydrotreating of residua: A review[C]. New York: Marcel Dekker, 1994.
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  65
  • HTML全文浏览量:  19
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-04
  • 修回日期:  2016-05-22
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-07-10

目录

    /

    返回文章
    返回