留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Catalytic conversion of glucose and cellobiose into ethylene glycol over various tungsten-based catalysts

CAO Yue-ling WANG Jun-wei KANG Mao-qing ZHU Yu-lei

曹月领, 王军威, 亢茂青, 朱玉雷. 不同钨基催化剂上葡萄糖和纤维二糖催化转化制备乙二醇[J]. 燃料化学学报(中英文), 2016, 44(7): 845-852.
引用本文: 曹月领, 王军威, 亢茂青, 朱玉雷. 不同钨基催化剂上葡萄糖和纤维二糖催化转化制备乙二醇[J]. 燃料化学学报(中英文), 2016, 44(7): 845-852.
CAO Yue-ling, WANG Jun-wei, KANG Mao-qing, ZHU Yu-lei. Catalytic conversion of glucose and cellobiose into ethylene glycol over various tungsten-based catalysts[J]. Journal of Fuel Chemistry and Technology, 2016, 44(7): 845-852.
Citation: CAO Yue-ling, WANG Jun-wei, KANG Mao-qing, ZHU Yu-lei. Catalytic conversion of glucose and cellobiose into ethylene glycol over various tungsten-based catalysts[J]. Journal of Fuel Chemistry and Technology, 2016, 44(7): 845-852.

不同钨基催化剂上葡萄糖和纤维二糖催化转化制备乙二醇

基金项目: 

The projeet was supporred by the Major State Basic Research Development Program of China 2012CB215305

详细信息
    通讯作者:

    王军威, Tel: +86 0351-4069680, Fax: +86351-4069680, E-mail: wangjw@sxicc.ac.cn

  • 中图分类号: O643

Catalytic conversion of glucose and cellobiose into ethylene glycol over various tungsten-based catalysts

Funds: 

The projeet was supporred by the Major State Basic Research Development Program of China 2012CB215305

More Information
    Corresponding author: WANG Jun-wei, Tel: +86 0351-4069680, Fax: +86351-4069680, E-mail: wangjw@sxicc.ac.cn
  • 摘要: 以葡萄糖和纤维二糖为模型化合物研究了逆羟醛缩合速率与加氢速率之间的匹配对纤维素转化产物分布的影响。葡萄糖和纤维二糖在共浸渍的Ni-WO3/SBA-15催化剂和物理混合的Ni/SBA-15、WO3/SBA-15催化剂上具有不同的产物分布。葡萄糖和纤维二糖在不同钨基催化剂上具有不同的乙二醇收率, 其顺序为WO3 < WO3/SBA-15 < (NH4)6W7O24·6H2O (偏钨酸铵), 这与它们的颗粒粒径成反比。在相同钨基催化剂用量条件下, 葡萄糖转化中乙二醇收率小于纤维二糖。
  • Figure  1  EG yield obtained over various tungstic compounds in the glucose conversion

    ■: WO3/SBA-15; ●: WO3; ▲: AMT

    Figure  2  EG yield obtained over various tungstic compounds in the cellobiose conversion

    ■: WO3/SBA-15; ●: WO3; ▲: AMT

    Table  1  Catalytic results of different catalysts for conversion of glucose

    Catalyst Conversion x/% Yield w /%
    EG 1, 2-PG glycerol sorbitol mannitol
    10%Ni/SBA-15 100 trace trace trace 97.2 no
    10%Ni/SBA-15+15%WO3/SBA-15a 100 15.2 1.0 2.3 54.5 7.7
    10%Ni-15%WO3/SBA-15 100 29.8 2.4 2.9 36.5 7.5
    reaction conditions: 0.5 g glucose, 40 g water, 0.125 g catalyst, 175 ℃, 80 min, 6 MPa H2 pressure
    a: 0.125 g of 15%WO3/SBA-15 was used to make sure that it had the same WO3 content as the 10%Ni-15%WO3/SBA-15
    下载: 导出CSV

    Table  2  Catalytic results of different catalysts for conversion of cellobiose

    Catalyst Conversion x/% Yield w/%
    EG 1, 2-PG glycerol sorbitol mannitol
    10%Ni/SBA-15 97.8 trace trace trace 47.7 no
    10%Ni/SBA-15+15%WO3/SBA-15a 100 15.3 1.1 1.8 51.7 4.6
    10%Ni-15%WO3/SBA-15 100 40.5 3.4 2.8 18.5 2.0
    reaction conditions: 0.5 g cellobiose, 40 g water, 0.125 g catalyst, 190 ℃, 30 min, 6 MPa H2 pressure
    a: 0.125 g 15%WO3/SBA-15 was used to make sure that it had the same WO3 content as the 10%Ni-15%WO3/SBA-15
    下载: 导出CSV

    Table  3  Catalytic results of different amounts of WO3/SBA-15 for glucose conversion

    Catalyst Amount m/g Conversion x/% Yield w/%
    EG 1, 2-PG glycerol sorbitol mannitol
    15%WO3/SBA-15 0.125 100 15.2 1.0 2.3 54.5 7.7
    15%WO3/SBA-15 0.190 100 19.6 1.2 2.3 47.0 10.9
    15%WO3/SBA-15 0.250 100 23.7 1.8 2.7 38.0 8.1
    15%WO3/SBA-15 0.375 100 36.5 2.8 3.8 21.7 5.9
    reaction conditions: 0.5 g glucose, 40 g water, 0.125 g 10%Ni/SBA-15, 175 ℃, 80 min, 6 MPa H2 pressure
    下载: 导出CSV

    Table  4  Catalytic results of different amounts of WO3/SBA-15 for cellobiose conversion

    Catalyst Amount m/g Conversion x/% Yield w/%
    EG 1, 2-PG glycerol sorbitol mannitol
    15%WO3/SBA-15 0.125 100 15.3 1.1 1.8 51.7 4.6
    15%WO3/SBA-15 0.190 100 30.8 2.1 2.1 32.2 5.2
    15%WO3/SBA-15 0.250 100 37.6 3.4 3.5 23.4 5.4
    15%WO3/SBA-15 0.375 100 41.6 3.7 3.6 24.7 5.0
    reaction conditions: 0.5 g cellobiose, 40 g water, 0.125 g 10%Ni/SBA-15, 190 ℃, 30 min, 6 MPa H2 pressure
    下载: 导出CSV

    Table  5  Catalytic results of different amounts of WO3 for glucose conversion

    Catalyst Amounta m/g Conversion x/% Yield w /%
    EG 1, 2-PG glycerol sorbitol mannitol
    WO3 0.018 7 100 2.7 0.2 1.3 82.3 4.9
    WO3 0.037 5 100 2.6 0.3 1.7 85.6 10.0
    WO3 0.056 2 100 8.3 0.3 1.6 71.8 11.0
    WO3 0.082 5 100 13.4 0.5 1.9 61.0 6.2
    reaction conditions: 0.5 g glucose, 40 g water, 0.125 g 10%Ni/SBA-15, 175 ℃, 80 min, 6 MPa H2 pressure
    a: the WO3 amounts listed from the first to the fourth line are the same as those contained in 0.125, 0.250, 0.375 and 0.550 g 15%WO3/SBA-15, respectively
    下载: 导出CSV

    Table  6  Catalytic results of different amounts of WO3 for cellobiose conversion

    Catalyst Amount m/g Conversion x/% Yield w /%
    EG 1, 2-PG glycerol sorbitol mannitol
    WO3 0.018 7 100 11.9 0.6 1.8 63.0 6.1
    WO3 0.037 5 100 15.8 0.5 2.0 51.6 5.4
    WO3 0.056 2 100 23.8 0.5 1.8 44.9 6.4
    WO3 0.082 5 100 30.5 0.9 1.8 38.9 5.3
    reaction conditions: 0.5 g cellobiose, 40 g water, 0.125 g 10%Ni/SBA-15, 190 ℃, 30 min, 6 MPa H2 pressure
    a: the WO3 amounts listed from the first to the fourth line are the same as those contained in 0.125, 0.250, 0.375 and 0.550 g 15%WO3/SBA-15, respectively
    下载: 导出CSV

    Table  7  Catalytic results of different amounts of AMT for glucose conversion

    Catalyst Amounta m/g Conversion x/% Yield w/%
    EG 1, 2-PG glycerol sorbitol mannitol
    AMT 0.021 8 100 22.6 1.2 2.4 48.6 4.4
    AMT 0.033 1 100 35.9 1.5 2.4 30.5 3.7
    AMT 0.043 6 100 41.4 2.5 2.6 22.9 2.6
    AMT 0.065 4 100 44.5 2.7 2.9 21.2 2.7
    reaction conditions: 0.5 g glucose, 40 g water, 0.125 g 10%Ni/SBA-15, 175 ℃, 80 min, 6 MPa H2 pressure
    a: the W amounts listed from the first to the fourth line are the same as those contained in 0.125, 0.190, 0.250 and 0.375 g 15%WO3/SBA-15, respectively
    下载: 导出CSV

    Table  8  Catalytic results of different amounts of AMT for cellobiose conversion

    Catalyst Amount m/g Conversion x/% Yield w/ %
    EG 1, 2-PG glycerol sorbitol mannitol
    AMT 0.0218 100 52.4 2.9 2.0 19.6 2.6
    AMT 0.0331 100 50.6 2.8 2.0 18.8 2.8
    AMT 0.0436 100 51.0 3.1 2.0 20.2 2.4
    AMT 0.0654 100 49.6 3.2 1.9 17.6 2.4
    reaction conditions: 0.5 g cellobiose, 40 g water, 0.125 g 10%Ni/SBA-15, 190 ℃, 30 min, 6 MPa H2 pressure
    a: the W amounts listed from the first to the fourth line are the same as those contained in 0.125, 0.190, 0.250 and 0.375 g 15%WO3/SBA-15, respectively
    下载: 导出CSV
  • [1] HUBER G W, IBORRA S, CORMA A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering[J]. Chem Rev, 2006, 106(9): 4044-4098. doi: 10.1021/cr068360d
    [2] CORMA A, IBORRA S, VELTY A. Chemical routes for the transformation of biomass into chemicals[J]. Chem Rev, 2007, 107(6): 2411-2502. doi: 10.1021/cr050989d
    [3] ONDA A, OCHI T, YANAGISAWA, K. Selective hydrolysis of cellulose into glucose over solid acid catalysts[J]. Green Chem, 2008, 10(10): 1033-1037. doi: 10.1039/b808471h
    [4] FUKUOKA A, DHEPE P A. Catalytic conversion of cellulose into sugar alcohols[J]. Angew Chem Int Ed, 2006, 45(31): 5161-5163. doi: 10.1002/(ISSN)1521-3773
    [5] JI N, ZHANG T, ZHENG M Y, WANG A Q, WANG H, WANG X D, CHEN J G. Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts[J]. Angew Chem, 2008, 120(44): 8638-8641. doi: 10.1002/ange.v120:44
    [6] SU Y, BROWN H M, HUANG X W, ZHOU X D, AMONETTE J E, ZHANG Z C. Single-step conversion of cellulose to 5-hydroxymethlfurfural (HMF), a versatile platform chemical[J]. Appl Catal A: Gen, 2009, 361(1/2): 117-122. https://www.researchgate.net/publication/239153841_Single-Step_Conversion_of_Cellulose_to_5-Hydroxymethylfurfural_%28HMF%29_a_Versatile_Platform_Chemical
    [7] KUO I J, SUZUKI N, YAMAUCHI Y, WU K C. W. Cellulose-to-HMF conversion using crystalline mesoporous titania and zirconia nanocatalysts in ionic liquid systems[J]. RSC Adv, 2013, 3(6): 2028-2034. doi: 10.1039/C2RA21805D
    [8] ZHANG J Z, LIU X, SUN M, MA X H, HAN Y. Direct conversion of cellulose to glycolic acid with a phosphomolybdic acid catalyst in a water medium[J]. ACS Catal, 2012, 2(8): 1698-1702. doi: 10.1021/cs300342k
    [9] AN D L, YE A H, DENG W P, ZHANG Q H, WANG Y. Selective conversion of cellobiose and cellulose into gluconic acid in water in the presence of oxygen, catalyzed by polyoxometalate-supported gold nanoparticles[J]. Chem Eur J, 2012, 18(10): 2938-2947. doi: 10.1002/chem.201103262
    [10] SERRANO-RUIZ J C, BRADEN D J, WEST R M, DUMESIC J A. Conversion of cellulose to hydrocarbon fuels by progressive removal of oxygen[J]. Appl Catal B: Environ, 2010, 100(1/2): 184-189. https://www.researchgate.net/publication/239154326_Conversion_of_cellulose_to_hydrocarbon_fuels_by_progressive_removal_of_oxygen
    [11] LIU Y, CHEN L G, WANG T J, ZHANG X H, LONG J X, ZHANG Q, MA L L. High yield of renewable hexanes by direct hydrolysis-hydrodeoxygenation of cellulose in an aqueous phase catalytic system[J]. RSC Adv, 2015, 5(15): 11649-11657. doi: 10.1039/C4RA14304C
    [12] REZAEI P S, SHAFAGHAT H, DAUD W M A W. Suppression of coke formation and enhancement of aromatic hydrocarbon production in catalytic fast pyrolysis of cellulose over different zeolites: Effects of pore structure and acidity[J]. RSC Adv, 2015, 5(80): 65408-65414. doi: 10.1039/C5RA11332F
    [13] YUE H R, ZHAO Y J, MA X B, GONG J L. Ethylene glycol: Properties, synthesis, and applications[J]. Chem Soc Rev, 2012, 41(11): 4218-4244. doi: 10.1039/c2cs15359a
    [14] ZHANG Y H, WANG A Q, ZHANG T. A new 3D mesoporous carbon replicated from commercial silica as a catalyst support for direct conversion of cellulose into ethylene glycol[J]. Chem Commun, 2010, 46(6): 862-864. doi: 10.1039/B919182H
    [15] ZHENG M Y, WANG A Q, JI N, PANG J F, WANG X D, ZHANG T. Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol[J]. ChemSusChem, 2010, 3(1): 63-66. doi: 10.1002/cssc.v3:1
    [16] BAEK I G, YOU S J, PARK E D. Direct conversion of cellulose into polyols over Ni/W/SiO2-Al2O3[J]. Bioresour Technol, 2012, 114: 684-690. doi: 10.1016/j.biortech.2012.03.059
    [17] CAO Y L, WANG J W, LI Q F, YIN N, LIU Z M, KANG M Q, ZHU Y L. Hydrolytic hydrogenation of cellulose over Ni-WO3/SBA-15 catalysts[J]. J Fuel Chem Technol, 2013, 41(8): 943-949. doi: 10.1016/S1872-5813(13)60041-9
    [18] CAO Y L, WANG J W, KANG M Q, ZHU Y L. Efficient synthesis of ethylene glycol from cellulose over Ni-WO3/SBA-15 catalysts[J]. J Mole Catal A: Gen, 2014, 381: 46-53. doi: 10.1016/j.molcata.2013.10.002
    [19] CAO Y L, WANG J W, KANG M Q, ZHU Y L. Catalytic conversion of glucose and cellobiose to ethylene glycol over Ni-WO3/SBA-15 catalysts[J]. RSC Adv, 2015, 5(110): 90904-90912. doi: 10.1039/C5RA15400F
    [20] LIU Y, LUO C, LIU H C. Tungsten trioxide promoted selective conversion of cellulose into propylene glycol and ethylene glycol on a ruthenium catalyst[J]. Angew Chem, 2012, 124(13): 3303-3307. doi: 10.1002/ange.v124.13
    [21] TAI Z J, ZHANG J Y, WANG A Q, ZHENG M Y, ZHANG T. Temperature-controlled phase-transfer catalysis for ethylene glycol production from cellulose[J]. Chem Commun, 2012, 48(56): 7052-7054. doi: 10.1039/c2cc32305b
    [22] ZHAO G H, ZHENG M Y, ZHANG J Y, WANG A Q, ZHANG T. Catalytic conversion of concentrated glucose to ethylene glycol with semicontinuous reaction system[J]. Ind Eng Chem Res, 2013, 52(28): 9566-9572. doi: 10.1021/ie400989a
    [23] ZHANG J Y, HOU B L, WANG A Q, LI Z L, WANG H, ZHANG T. Kinetic study of the competitive hydrogenation of glycolaldehyde and glucose on Ru/C with or without AMT[J]. AIChE J, 2014, 61(1): 224-238. http://or.nsfc.gov.cn/handle/00001903-5/195665
    [24] ZHANG J Y, YANG X F, HOU B L, WANG A Q, LI Z L, WANG H, ZHANG T. Comparison of cellobiose and glucose transformation to ethylene glycol[J]. Chin J Catal, 2014, 35(11): 1811-1817. doi: 10.1016/S1872-2067(14)60151-0
    [25] ZHANG J Y, HOU B L, WANG X F, LI Z L, WANG A Q, ZHANG T. Inhibiting effect of tungstic compounds on glucose hydrogenation over Ru/C catalyst[J]. J Energ Chem, 2015, 24(1): 9-14. doi: 10.1016/S2095-4956(15)60278-9
    [26] WANG A Q, ZHANG T. One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts[J]. Acc Chem Res, 2013, 46(7): 1377-1386. doi: 10.1021/ar3002156
    [27] LUO C, WANG S, LIU H C. Cellulose conversion into polyols catalyzed by reversibly formed acids and supported ruthenium clusters in hot water[J]. Angew Chem Int Eng, 2007, 46(40): 7636-7639. doi: 10.1002/(ISSN)1521-3773
    [28] RINALDI R, SCHÜTH F. Design of solid catalysts for the conversion of biomass[J]. Energy Environ Sci, 2009, 2(6): 610-626. doi: 10.1039/b902668a
    [29] TAI Z J, ZHANG J Y, WANG A Q, PANG J F, ZHENG M Y, ZHANG T. Catalytic conversion of cellulose to ethylene glycol over a low-cost binary catalyst of Raney Ni and tungstic acid[J]. Chem Sus Chem, 2013, 6(4): 652-658. doi: 10.1002/cssc.201200842
  • 加载中
图(2) / 表(8)
计量
  • 文章访问数:  116
  • HTML全文浏览量:  35
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-28
  • 修回日期:  2016-04-28
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-07-10

目录

    /

    返回文章
    返回