留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高硫石油焦燃烧过程中不同赋存形态钒的变迁行为研究

熊青安 李家州 李春玉 郭帅 赵建涛 房倚天

熊青安, 李家州, 李春玉, 郭帅, 赵建涛, 房倚天. 高硫石油焦燃烧过程中不同赋存形态钒的变迁行为研究[J]. 燃料化学学报(中英文), 2018, 46(2): 145-151.
引用本文: 熊青安, 李家州, 李春玉, 郭帅, 赵建涛, 房倚天. 高硫石油焦燃烧过程中不同赋存形态钒的变迁行为研究[J]. 燃料化学学报(中英文), 2018, 46(2): 145-151.
XIONG Qing-an, LI Jia-zhou, LI Chun-yu, GUO Shuai, ZHAO Jian-tao, FANG Yi-tian. Migration and transformation behaviors of vanadium (V) with different occurrence modes during combustion of high sulfur petroleum coke[J]. Journal of Fuel Chemistry and Technology, 2018, 46(2): 145-151.
Citation: XIONG Qing-an, LI Jia-zhou, LI Chun-yu, GUO Shuai, ZHAO Jian-tao, FANG Yi-tian. Migration and transformation behaviors of vanadium (V) with different occurrence modes during combustion of high sulfur petroleum coke[J]. Journal of Fuel Chemistry and Technology, 2018, 46(2): 145-151.

高硫石油焦燃烧过程中不同赋存形态钒的变迁行为研究

基金项目: 

国家自然科学基金 21576276

国家自然科学基金 21506241

中国科学院战略性先导科技专项 XDA07050100

详细信息
  • 中图分类号: TE626.87

Migration and transformation behaviors of vanadium (V) with different occurrence modes during combustion of high sulfur petroleum coke

Funds: 

the National Natural Science Foundation of China 21576276

the National Natural Science Foundation of China 21506241

Strategic Priority Research Program of the Chinese Academy of Sciences XDA07050100

More Information
  • 摘要: 采用逐级化学提取结合ICP-OES方法,研究了高硫石油焦燃烧过程中重金属元素钒的赋存形态和迁移转化行为,并结合热力学分析方法,探讨了其化学反应机理。石油焦中钒的赋存形态主要为有机质结合态和稳定态。随着燃烧温度的升高,有机质结合态的钒发生快速分解直至消失,且与Ca、Na、Fe和K等矿物质反应,转化为水溶态和部分离子可交换态、碳酸盐结合态、氧化物结合态钒。稳定态钒主要是与其他矿物质形成非晶态结构物质存在于石油焦中,在高温燃烧过程中,会部分熔融转化并释放出少量的钒。石油焦中钒的挥发性随着燃烧温度和燃尽率的升高逐渐增大,且呈现阶段性挥发的特点。温度高于1100 ℃,有机质结合态的钒快速分解,且部分转化为具有挥发性的VO2等化合物,致使钒的挥发率急剧增大。
  • 图  1  石油焦燃烧装置示意图

    Figure  1  Schematic diagram of petroleum coke combustion

    图  2  石油焦中钒的赋存形态

    Figure  2  Occurrence modes of vanadium species in petcoke

    图  3  SL和YQ石油焦灰的XRD谱图

    Figure  3  XRD patterns of SL and YQ petcoke ash

    1: quartz(SiO2); 2: anhydrite(CaSO4); 3: sodium metavanadate(Na2V2O5); 4: nickel orthovanadate(Ni3V2O8); 5: anorthite(CaAl2SiO6); 6: potassium vanadium oxide (K3V5O14); 7: calcium silicate(Ca2SiO4); 8: iron silicate (Fe2SiO4); 9: anorthite(CaAl2Si2O8); 10: gehlenite(Ca2Al2SiO7); 11: mullite(Al6Si2O13)

    图  4  石油焦及燃烧残渣中钒的形态分布

    Figure  4  Evolution of vanadium in petcoke and combustion residual

    : volatility; : exchangeable; : carbonates; : Fe-Mn oxides; : organic; : stable

    图  5  不同燃烧温度下SL石油焦灰的XRD谱图

    Figure  5  XRD patterns of SL petcoke ashes prepared at different combustion temperatures

    1: quartz(SiO2); 2: sodium metavanadate(Na2V2O5); 3: calcium vanadium oxide (Ca2V2O7); 4: anorthite(CaAl2SiO6); 5: potassium vanadium oxide(K3V5O14); 6: sodium magnesium vanadium oxide(NaMg4[VO4]3); 7: magnesium/iron vanadium silicate([Fe、Mg]V2Si3O12); 8: iron silicate (Fe2SiO4)

    图  6  石油焦燃烧过程中钒的挥发率随温度的变化

    Figure  6  V volatility during petcoke combustion from 1000 to 1400 ℃

    图  7  石油焦燃烧过程中钒化合物变化的热力学分析

    Figure  7  Equilibrium composition for V species

    图  8  1200、1300、1400 ℃下钒的挥发率随燃尽率的变化

    Figure  8  V volatility versus burn out rate at 1200, 1300 and 1400 ℃

    表  1  石油焦的工业分析和元素分析

    Table  1  Proximate and ultimate analyses of petcoke

    Sample Proximate analysis wad/% Ultimate analysis wdaf/%
    M A V FC C H N S Oa
    SL 9.81 0.80 0.67 88.72 90.13 3.66 1.16 3.65 1.40
    YQ 11.71 0.69 1.43 86.17 89.44 3.85 1.31 3.89 1.51
    a: by difference
    下载: 导出CSV

    表  2  石油焦灰的矿物质组成

    Table  2  Ash compositions of petcoke

    Sample Content w/%
    V2O5 Al2O3 SiO2 NiO Fe2O3 TiO2 CaO MgO Na2O SO3 K2O P2O5
    SL 33.89 8.84 15.11 9.92 5.92 0.83 15.92 3.03 3.20 0.75 0.76 0.55
    YQ 33.51 9.98 18.07 9.77 7.40 1.09 6.01 1.29 2.74 5.53 1.58 0.40
    下载: 导出CSV

    表  3  热力学模拟输入的数据

    Table  3  Summary of input reactants into FactSage

    Reactant
    gas
    mol/kg-
    petcoke
    Trace
    elements
    mol/kg-
    petcoke
    CO2 74.00 V2O5 1.490×10-2
    H2O 18.05 SiO2 2.148×10-2
    O2 25.00 CaO 2.271×10-2
    NO 0.81 Al2O3 0.693×10-2
    SO2 1.13 Fe2O3 0.296×10-2
    N2 390.46 NiO 1.165×10-2
    Na2O 0.413×10-2
    下载: 导出CSV
  • [1] 金艳春.国内石油焦市场供需现状及预测[J].中国石油和化工经济分析, 2016, (3):57-60. http://www.cnki.com.cn/Article/CJFDTotal-SYFX201603024.htm

    JIN Yan-chun. Supply and demand status and prediction of domestic petroleum coke market[J]. Econ Anal China Pet Chem Ind, 2016, (3):57-60. http://www.cnki.com.cn/Article/CJFDTotal-SYFX201603024.htm
    [2] BRYERS R W. Utilization of petroleum coke and petroleum coke/coal blends as a means of steam raising[J]. Fuel Process Technol, 1995, 44(1/3):121-141. https://www.sciencedirect.com/science/article/pii/037838209400118D
    [3] CHEN J, LU X. Progress of petroleum coke combusting in circulating fluidized bed boilers-A review and future perspectives[J]. Resour Conserv Recycl, 2007, 49(3):203-216. https://www.sciencedirect.com/science/article/pii/S0921344906000589
    [4] ZYCHLINSKI L, BYCZKOWSKI J Z, KULKARNI A P. Toxic effects of long-term intratracheal administration of vanadium pentoxide in rats[J]. Arch Environ Contam Toxicol, 1991, 20(3):295-298. doi: 10.1007/BF01064393
    [5] KELEMEN S R, SISKIN M, GORBATY M L, FERRUGHELLI D T, KWIATEK P J, BROWN L D, EPPIG C P, KENNEDY R J. Delayed coker coke morphology fundamentals:Mechanistic implications based on XPS analysis of the composition of vanadium-and nickel-containing additives during coke formation[J]. Energy Fuels, 2007, 21(2):927-940. doi: 10.1021/ef060493e
    [6] AMORIM F A C, WELZ B, COSTA A C, LEPRI F G, VALE M G, FERREIRA S L. Determination of vanadium in petroleum and petroleum products using atomic spectrometric techniques[J]. Talanta, 2007, 72(2):349-359. doi: 10.1016/j.talanta.2006.12.015
    [7] ZULIANI J E, MIYATA T, MIZOGUCHI T, FENG J, KIRK D W, JIA C Q. Characterization of vanadium in oil sands fluid petroleum coke using electron microscopy[J]. Fuel, 2016, 178:124-128. doi: 10.1016/j.fuel.2016.03.015
    [8] CONN R. Environmental evaluation of CFB ash from petroleum coke[C]//Abstracts of Papers of the American Chemical Society. 115516TH ST, NW, WASHINGTON, DC 20036 USA: AMER CHEMICAL SOC, 1998, 216: U768-U768.
    [9] JIA L, ANTHONY E J, CHARLAND J P. Investigation of vanadium compounds in ashes from a CFBC firing petroleum coke[J]. Energy Fuels, 2002, 16(2):397-403. doi: 10.1021/ef010238o
    [10] LI Y, ZHANG J, ZHAO Y, ZHENG C. Volatility and speciation of mercury during pyrolysis and gasification of five Chinese coals[J]. Energy Fuels, 2011, 25(9):3988-3996. doi: 10.1021/ef2006904
    [11] TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Anal Chem, 1979, 51(7):844-851. doi: 10.1021/ac50043a017
    [12] LI J Z, ZHAO J T, FANG H B, LIU T, FANG Y T. Transformation behavior of vanadium in petroleum coke during high temperature CO2-gasification[J]. Fuel, 2017, 194:83-90. doi: 10.1016/j.fuel.2017.01.002
    [13] SOROKINA T P, BULUCHEVSKAYA L A, POTAPENKO O V, DORONIN V P. Conversion of nickel and vanadium porphyrins under catalytic cracking conditions[J]. Petrol Chem, 2010, 50(1):51-55. doi: 10.1134/S096554411001007X
    [14] LI J Z, ZHAO J T, ZHANG L X, DAI X, FANG Y T. Predicting the vanadium speciation during petroleum coke combustion by thermodynamic equilibrium calculation[J]. J Therm Anal Calorim, 1-9. doi: 10.1007/s10973-017-6571-2
    [15] LEE J D. Concise Inorganic Chemistry[M]. Oxford:Blackwell Science Ltd. 1998, 979.
    [16] BUNT J R, WAANDERS F B. Trace element behaviour in the Sasol-Lurgi fixed-bed dry-bottom gasifier. Part 2-The semi-volatile elements:Cu, Mo, Ni and Zn[J]. Fuel, 2009, 88(6):961-969. doi: 10.1016/j.fuel.2008.10.041
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  178
  • HTML全文浏览量:  64
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-22
  • 修回日期:  2018-01-02
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-02-10

目录

    /

    返回文章
    返回