留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同金属改性Ce-Mn/ZSM-5催化剂的制备及性能研究

张乾蔚 王学涛

张乾蔚, 王学涛. 不同金属改性Ce-Mn/ZSM-5催化剂的制备及性能研究[J]. 燃料化学学报(中英文), 2019, 47(10): 1265-1272.
引用本文: 张乾蔚, 王学涛. 不同金属改性Ce-Mn/ZSM-5催化剂的制备及性能研究[J]. 燃料化学学报(中英文), 2019, 47(10): 1265-1272.
ZHANG Qian-wei, WANG Xue-tao. Preparation and properties of Ce-Mn/ZSM-5 catalysts modified with different metals[J]. Journal of Fuel Chemistry and Technology, 2019, 47(10): 1265-1272.
Citation: ZHANG Qian-wei, WANG Xue-tao. Preparation and properties of Ce-Mn/ZSM-5 catalysts modified with different metals[J]. Journal of Fuel Chemistry and Technology, 2019, 47(10): 1265-1272.

不同金属改性Ce-Mn/ZSM-5催化剂的制备及性能研究

基金项目: 

国家自然科学基金 50806020

河南省科技创新人才计划(杰出青年) 114100510010

河南省自然科学基金 182300410256

详细信息
  • 中图分类号: TK229.6;X701

Preparation and properties of Ce-Mn/ZSM-5 catalysts modified with different metals

Funds: 

National Natural Science Foundation of China 50806020

Henan Science and Technology Innovation Talent Program (Outstanding Youth) 114100510010

Project Supported by National Natural Science Foundation of Henan Province 182300410256

More Information
  • 摘要: 采用浸渍法制备了一系列Y-Ce-Mn/ZSM-5催化剂(Y=Co、Cr、Cu、La、Zr)。结合NH3-SCR反应脱硝活性测试的结果,获得各种催化剂的最佳活性温度窗口及最大脱硝效率。采用XRD、TEM、H2-TPR、NH3-TPD和in situ DRIFTS等技术对催化剂进行了表征。结果表明,除Cr之外,其他改性金属的最大脱硝效率均在98%以上,其中,Cu改性的Cu-Ce-Mn/ZSM-5显示出最佳的催化活性,在375 ℃转化率达到99.22%。原因在于表面金属氧化物种高度分散,起作用的表面弱酸酸位较多,还原性强的物种量较多。
  • 图  1  不同金属改性的Ce-Mn/ZSM-5及Ce-Mn/ZSM-5的NOx转化效率

    Figure  1  NOx conversion efficiency of the modified Ce-Mn/ZSM-5 catalysts

    图  2  不同金属改性的Ce-Mn/ZSM-5及Ce-Mn/ZSM-5的XRD谱图

    Figure  2  XRD characterization of different metal modified Ce-Mn/ZSM-5 and Ce-Mn/ZSM-5

    图  3  不同金属改性Ce-Mn/ZSM-5催化剂的TEM照片

    Figure  3  TEM images of the modified Ce-Mn/ZSM-5 catalysts

    (a): Co-Ce-Mn/ZSM-5; (b): Cr-Ce-Mn/ZSM-5; (c): Cu-Ce-Mn/ZSM-5; (d): La-Ce-Mn/ZSM-5; (e): Zr-Ce-Mn/ZSM-5

    图  4  不同金属改性的Ce-Mn/ZSM-5催化剂的NH3-TPD谱图

    Figure  4  NH3-TPD profiles of the modified Ce-Mn/ZSM-5 catalysts

    图  5  不同金属改性的Ce-Mn/ZSM-5催化剂的H2-TPR谱图

    Figure  5  H2-TPR profiles of the modified Ce-Mn/ZSM-5 catalysts

    图  6  Cu-Ce-Mn/ZSM-5催化剂表面NH3吸附in situ DRIFTS谱图

    Figure  6  In situ DRIFTS spectra of the surface NH3 adsorption over the Cu-Ce-Mn/ZSM-5 catalyst

    图  7  Cu-Ce-Mn/ZSM-5催化剂饱和吸附NH3后通入NO+O2 in situ DRIFTS谱图

    Figure  7  In situ DRIFTS spectra of the Cu-Ce-Mn/ZSM-5 catalyst: NO+O2 injection after saturated adsorption of NH3

    图  8  Cu-Ce-Mn/ZSM-5催化剂表面NO+O2吸附in situ DRIFTS谱图

    Figure  8  In situ DRIFTS spectra of the Cu-Ce-Mn/ZSM-5 catalyst: NO + O2 adsorption

    图  9  Cu-Ce-Mn/ZSM-5催化剂饱和吸附NO+O2后通入NH3 in situ DRIFTS谱图

    Figure  9  In situ DRIFTS spectra of the Cu-Ce-Mn/ZSM-5 catalyst: saturated with NO+O2 and then exposed to NH3 flow

  • [1] 李言顺, 郑逸璇, 刘梦瑶, 郑博, 王婷, 同丹, 粟京平, 王普才, 林金泰, 张强.卫星遥感反演京津冀地区2011-2017年氮氧化物污染变化[J].环境科学学报, 2018, 38(10): 3797-3806. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201810002

    LI Yan-shun, ZHENG Yi-xuan, LIU Meng-yao, ZHENG Bo, WANG Ting, TONG Dan, LI Jing-ping, WANG Pu-cai, LIN Jin-tai, ZHANG Qiang. Satellite-based observations of changes in nitrogen oxides over the Beijing-Tianjin-Hebei region from 2011 to 2017[J]. J Environ Sci-China, 2018, 38(10): 3797-3806. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201810002
    [2] COGHLAN A.The curious case of NOx pollution[J].New Sci, 2015, 227(3041): 10-11. doi: 10.1016/S0262-4079(15)31295-1
    [3] KNIBBS L D, CORTES DE WATERMAN A M, TOELLE B G, GUO Y, DENISON L, JALALUDIN B, MARKS G B, WILLIAMS G M. The Australian Child Health and Air Pollution Study (ACHAPS): A national population-based cross-sectional study of long-term exposure to outdoor air pollution, asthma, and lung function[J]. Environ Int, 2018, 120: 394-403. doi: 10.1016/j.envint.2018.08.025
    [4] 王爱娟, 孙丽丽, 张璟尧.《锅炉大气污染物排放标准》(GB13271-2014)浅析[J].环境研究与监测, 2017, 30(3): 76-78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172017110100000190

    WANG Ai-juan, SUN Li-li, ZHANG Jing-yao. Analysis on "Standard for Pollutant Emission from Boilers"(GB13271-2014)[J]. Environ Res Monitor, 2017, 30(3): 76-78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172017110100000190
    [5] 杨延龙.火电厂氮氧化物减排及SCR烟气脱硝技术浅析[J].能源环境保护, 2017, 31(2): 31-35, 39. doi: 10.3969/j.issn.1006-8759.2017.02.010

    YANG Yan-long. Emissions reduction of NOx in coal-fired power plant and simple analysis of SCR flue gas denitration technology[J]. Energy Environ Prot, 2017, 31(2): 31-35, 39. doi: 10.3969/j.issn.1006-8759.2017.02.010
    [6] CHEN C, CAO Y, LIU S, CHEN J M, JIA W B. Review on the latest developments in modified vanadium-titanium-based SCR catalysts[J]. Chin J Catal, 2018, 39 (8): 1347-1365. doi: 10.1016/S1872-2067(18)63090-6
    [7] JIANG L J, LIU Q C, RAN G J, KONG G J, REN M, YANG S, LI J, JIANG L. V2O5-modified Mn-Ce/AC catalyst with high SO2 tolerance for low-temperature NH3-SCR of NO[J]. Chem Eng J, 2019, 370: 810-821. doi: 10.1016/j.cej.2019.03.225
    [8] WEI Y, FAN H, WANG R. Transition metals (Co, Zr, Ti) modified iron-samarium oxide as efficient catalysts for selective catalytic reduction of NOx at low-temperature[J]. Appl Surf Sci, 2018, 459: 63-73. doi: 10.1016/j.apsusc.2018.07.151
    [9] 李晓东, 吕刚, 宋崇林, 宋金瓯, 宾峰, 吴少华.金属改性分子筛型催化剂低温SCR反应机理[J].燃烧科学与技术, 2014, 20(4): 341-347. http://d.old.wanfangdata.com.cn/Periodical/rskxyjs201404011

    LI Xiao-dong, LYU Gang, SONG Chong-lin, SONG Jin-ou, BIN Feng, WU Shao-hua. Mechanism of the Low-Temperature SCR reaction on metal modified ZSM-5 catalysts[J]. J Combust Sci Technol, 2014, 20(4): 341-347. http://d.old.wanfangdata.com.cn/Periodical/rskxyjs201404011
    [10] CARJA G, KAMESHIMA Y, OKADA K, MADHUSOODANA C D. Mn-Ce/ZSM5 as a new superior catalyst for NO reduction with NH3[J]. Appl Catal B: Environ, 2007, 73(1): 60-64. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=713d6e33dae8be959b7f25976b62a459
    [11] WANG T, LIU H, ZHANG X, LIU J, ZHANG Y, GUO Y, SUN B. Catalytic conversion of NO assisted by plasma over Mn-Ce/ZSM5-multi-walled carbon nanotubes composites: Investigation of acidity, activity and stability of catalyst in the synergic system[J]. Appl Surf Sci, 2018, 457: 187-199. doi: 10.1016/j.apsusc.2018.06.216
    [12] ZHOU G, ZHONG B, WANG W, GUAN X, HUANG B, YE D, WU H. In situ DRIFTS study of NO reduction by NH3 over Fe-Ce-Mn/ZSM-5 catalysts[J]. Catal Today, 2011, 175(1): 157-163. doi: 10.1016/j.cattod.2011.06.004
    [13] PENG C, LIU Z, YONEZAWA Y, YANABA Y, KATADA N, MURAYAMA I, SEGOSHI S, OKUBO T, WAKIHARA T. Ultrafast post-synthesis treatment to prepare ZSM-5@Silicalite-1 as a core-shell structured zeolite catalyst[J]. Microporous Mesoporous Mater, 2019, 277: 197-202. doi: 10.1016/j.micromeso.2018.10.036
    [14] RUI J, LYU J, HU H, ZHANG Q, WANG Q, LI X. Synthesized high-silica hierarchical porous ZSM-5 and optimization of its reaction conditions in benzene alkylation with methanol[J]. Chin Chem Lett, 2019, 30(3): 757-761. doi: 10.1016/j.cclet.2018.09.016
    [15] ZHU L, ZHANG L, QU H, ZHONG Q. A study on chemisorbed oxygen and reaction process of Fe-CuOx/ZSM-5 via ultrasonic impregnation method for low-temperature NH3-SCR[J]. J Mol Catal A: Chem, 2015, 409: 207-215. doi: 10.1016/j.molcata.2015.08.029
    [16] AND T G D, KANNAN M P. X-ray Diffraction (XRD) studies on the chemical states of some metal species in cellulosic chars and the ellingham diagrams[J]. Energy Fuels, 2007, 21(2): 596-601. doi: 10.1021/ef060395t
    [17] PANG L, FAN C, SHAO L, SONG K, YI J, CAI X, WANG J, KANG M, LI T. The Ce doping Cu/ZSM-5 as a new superior catalyst to remove NO from diesel engine exhaust[J]. Chem Eng J, 2014, 253: 394-401. doi: 10.1016/j.cej.2014.05.090
    [18] LIU X, WU X, WENG D, SHI L. Modification of Cu/ZSM-5 catalyst with CeO2 for selective catalytic reduction of NOx with ammonia[J]. J Rare Earths, 2016, 34(10): 1004-1009. doi: 10.1016/S1002-0721(16)60127-8
    [19] XU W, ZHANG G, CHEN H, ZHANG G, HAN Y, CHANG Y, GONG P. Mn/beta and Mn/ZSM-5 for the low-temperature selective catalytic reduction of NO with ammonia: Effect of manganese precursors[J]. Chin J Catal, 2018, 39(1): 118-127. doi: 10.1016/S1872-2067(17)62983-8
    [20] NANBA T, MASUKAWA S, OGATA A, UCHISAWA J, OBUCHI A. Active sites of Cu-ZSM-5 for the decomposition of acrylonitrile[J]. Appl Catal B: Environ, 2005, 61(3): 288-296. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5a3c36cac218abe507041bd4377fe34d
    [21] SOWADE T, LIESE T, SCHMIDT C, SCHVTZE F W, YU X, BERNDT H, GRVNERT W. Relations between structure and catalytic activity of Ce-In-ZSM-5 catalysts for the selective reduction of NO by methane: Ⅱ. Interplay between the CeO2 promoter and different indium sites[J]. J Catal, 2004, 225(1): 105-115. doi: 10.1016/j.jcat.2004.03.026
  • 加载中
图(10)
计量
  • 文章访问数:  179
  • HTML全文浏览量:  51
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-05
  • 修回日期:  2019-08-13
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-10-10

目录

    /

    返回文章
    返回