留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Enhanced formation of α-olefins by the pulse process between Fischer-Tropsch synthesis and N2 purging

SHI He-xiang LI Zhi-kai LIU Ke-feng XIAO Hai-cheng KONG Fan-hua ZHANG Juan CHEN Jian-gang

石和祥, 李志凯, 刘克峰, 肖海成, 孔繁华, 张娟, 陈建刚. 氮气吹扫和费托合成的脉冲过程以提高α-烯烃的选择性[J]. 燃料化学学报(中英文), 2016, 44(7): 822-829.
引用本文: 石和祥, 李志凯, 刘克峰, 肖海成, 孔繁华, 张娟, 陈建刚. 氮气吹扫和费托合成的脉冲过程以提高α-烯烃的选择性[J]. 燃料化学学报(中英文), 2016, 44(7): 822-829.
SHI He-xiang, LI Zhi-kai, LIU Ke-feng, XIAO Hai-cheng, KONG Fan-hua, ZHANG Juan, CHEN Jian-gang. Enhanced formation of α-olefins by the pulse process between Fischer-Tropsch synthesis and N2 purging[J]. Journal of Fuel Chemistry and Technology, 2016, 44(7): 822-829.
Citation: SHI He-xiang, LI Zhi-kai, LIU Ke-feng, XIAO Hai-cheng, KONG Fan-hua, ZHANG Juan, CHEN Jian-gang. Enhanced formation of α-olefins by the pulse process between Fischer-Tropsch synthesis and N2 purging[J]. Journal of Fuel Chemistry and Technology, 2016, 44(7): 822-829.

氮气吹扫和费托合成的脉冲过程以提高α-烯烃的选择性

基金项目: 

The project was supported by the National Natural Science Foundation of China 21373254

The project was supported by the National Natural Science Foundation of China 21503256

PetroChina PRIKY14006

PetroChina PRIKY15038

PetroChina PRIKY15039

PetroChina PRIKY15042

详细信息
    通讯作者:

    陈建刚, Tel: +86 0351-4040290, E-mail: chenjg@sxicc.ac.cn

  • 中图分类号: TQ529.2

Enhanced formation of α-olefins by the pulse process between Fischer-Tropsch synthesis and N2 purging

Funds: 

The project was supported by the National Natural Science Foundation of China 21373254

The project was supported by the National Natural Science Foundation of China 21503256

PetroChina PRIKY14006

PetroChina PRIKY15038

PetroChina PRIKY15039

PetroChina PRIKY15042

More Information
  • 摘要: 费托合成可以将煤炭或者生物质气化得到的合成气转化为α-烯烃等重要的化工产品。研究将费托合成和氮气吹扫操作组合成一脉冲过程, 在稳定的操作状态下保证费托合成和氮气吹扫交替进行。在传统的费托合成条件下(反应气速为2 000 h-1, 温度为497 K, 压力为2.0 MPa, 氢碳体积比为2.0) 考察了Fe-Co催化剂在脉冲过程中费托合成的活性和选择性。结果表明, N2吹扫温度和压力分别为517 K和0.2 MPa下的费托合成的C3烯烷比是未脉冲的相同反应条件下的九倍左右。同时, 反应过程中CH4的选择性和CO的转化率有所下降。在此基础上, 通过间歇反应在固定床反应器中进行该脉冲过程, 实验结果表明, 利用脉冲操作在费托反应中可以获得更高的烯烃选择性。
  • Figure  1  Experiment setup of the FTS

    ①: H2 cylinder; ②: N2 cylinder; ③: syngas cylinder; ④: regulators; ⑤: mass flow controllers; ⑥: shut-off valves; ⑦: fixed bed reactor; ⑧: hot trap; ⑨: cold trap; ⑩: gas chromatograph

    Figure  2  Dependences of the O/P for C3 on the reaction time during FTS after different purging process

    (a): 0.2 MPa; (b): 1.0 MPa; (c): 2.0 MPa
    ▲: 517 K; ○: 507 K; ■: 497 K; ▽: without purging

    Figure  3  Dependences of the CO conversion on the reaction time during FTS after different purging process

    (a): 497 K; (b): 507 K; (c): 517 K
    ■: without purging; ○: 2.0 MPa; ▲: 0.2 MPa

    Figure  4  Dependences of the CH4 selectivity on the reaction time during FTS after different purging process

    (a): 497 K; (b): 507 K; (c): 517 K
    ■: without purging; ○: 2.0 MPa; ▲: 0.2 MPa

    Figure  5  Comparison of the time dependence of production in propylene after purging during FTS among different purging process

    ■: 0.2 MPa, 517 K; ○: 1.0 MPa, 517 K; ▲: 0.2 MPa, 507 K; ▽: 1.0 MPa, 507 K; ◆: without purging

    Figure  6  Dependence of the O/P for C3 on the reaction time during FTS after only one purging with purging temperature of 517 K and purging pressure of 0.2 MPa

    Figure  7  Time dependence of CO conversion during FTS after only one purging at the purging temperature of 517 K and the purging pressure of 0.2 MPa

    Table  1  Comparison of amount of propylene for different batch

    Reaction time t/h Amount of propylene /mmol
    first batch second batch third batch
    48 1.443 1.452 1.435
    96 5.557 1.452 1.435
    144 9.518 12.878 12.959
    192 13.290 16.995 12.959
    240 17.599 21.122 25.548
    288 21.762 25.224 25.548
    336 25.739 29.376 37.423
    384 29.711 33.573 37.423
    432 33.672 37.748 50.297
    下载: 导出CSV
  • [1] DRY M E. The Fischer-Tropsch process: 1950-2000[J]. Catal Today, 2002, 71(3/4): 227-241. https://www.researchgate.net/publication/263678983_The_Fischer-Tropsch_process_1950-2000?_sg=WNzG9IYWWnwPQi8CQQE1MDwIz5630Ra7sU3J19mIc1uRXOC-uUHieAQhN9396LPOEx3dnWnwEGNj4giMiI--dvAS5cbE8V6zPFFGsPsp5tQ
    [2] ZHENG S, SUN J, SONG D, CHEN Z, CHEN J. The facile fabrication of magnetite nanoparticles and their enhanced catalytic performance in Fischer-Tropsch synthesis[J]. Chem Commun, 2015, 51(55): 11123-11125. doi: 10.1039/C5CC03336E
    [3] DUPAIN X, KRUL R A, SCHAVERIEN C J, MAKKEE M, MOULIJN J A. Production of clean transportation fuels and lower olefins from Fischer-Tropsch synthesis waxes under fluid catalytic cracking conditions[J]. Appl Catal B: Environ, 2006, 63(3/4): 277-295. https://www.researchgate.net/publication/223320482_Production_of_clean_transportation_fuels_and_lower_olefins_from_Fischer-Tropsch_Synthesis_waxes_under_fluid_catalytic_cracking_conditions_The_potential_of_highly_paraffinic_feedstocks_for_FCC
    [4] CAVELL R G, CREED B, GELMINI L, LAW D J, MCDONALD R, SANGER A R, SOMOGYVARI A. Design, syntheses and application of new phosphine and dithiophosphinate complexes of nickel: Catalyst precursors for the oligomerization of ethylene[J]. Inorg Chem, 1998, 37(4): 757-763. doi: 10.1021/ic970798w
    [5] JANARDANARAO M. Direct catalytic conversion of synthesis gas to lower olefins[J]. Ind Eng Chem Res, 1990, 29(9): 1735-1753. doi: 10.1021/ie00105a001
    [6] LIU Z, SUN C, WANG G, WANG Q, CAI G. New progress in R & D of lower olefin synthesis[J]. Fuel Process Technol, 2000, 62(2/3): 161-172.
    [7] PARK J, LEE Y, JUN K, BAE J W, VISWANADHAM N, KIM Y H. Direct conversion of synthesis gas to light olefins using dual bed reactor[J]. J Ind Eng Chem, 2009, 15(6): 847-853. doi: 10.1016/j.jiec.2009.09.011
    [8] TORRES GALÜIS H M, BITTER J H, KHARE C B, RUITENBEEK M, DUGULAN A I, DE JONG K P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science, 2012, 335(6070): 835-838. doi: 10.1126/science.1215614
    [9] MA C, CHEN J. Effect of hydrothermal treatment on precipitated iron catalyst for Fischer-Tropsch Synthesis[J]. Catal Lett, 2015, 145(2):702-711. doi: 10.1007/s10562-014-1457-4
    [10] SUN J, ZHENG S, ZHANG K, SONG D, LIU Y, SUN X, CHEN J. The crystal plane effect of CoFe nanocrystals on Fischer-Tropsch synthesis[J]. J Mater Chem A, 2014, 2(32): 13116-13122. doi: 10.1039/C4TA02425G
    [11] JOYNER R W. The mechanism of chain growth in the Fischer-Tropsch hydrocarbon synthesis[J]. Catal Lett, 1988, 1(10): 307-310. doi: 10.1007/BF00774872
    [12] MADON R J, IGLESIA E. The importance of olefin readsorption and H2/CO reactant ratio for hydrocarbon chain growth on ruthenium catalysts[J]. J Catal, 1993, 139(2): 576-590. doi: 10.1006/jcat.1993.1051
    [13] LINGHU W, LIU X, LI X, FUJIMOTO K. Selective synthesis of higher linear alpha-olefins over cobalt Fischer-Tropsch catalyst[J]. Catal Lett, 2006, 108(1/2): 11-13. https://www.researchgate.net/publication/244494461_Selective_Synthesis_of_Higher_Linear_a_-olefins_over_Cobalt_Fischer-Tropsch_Catalyst
    [14] JANANI H, REZVANI A R, GRIVANI G H, MIRZAEI A A. Fischer-Tropsch synthesis of hydrocarbons over new Co/Ce bimetallic catalysts derived from dipicolinate and carbonyl metal complexes[J]. J Inorg Organomet Polym, 2015, 25(5): 1169-1182. doi: 10.1007/s10904-015-0225-2
    [15] RAMASAMY K K, GRAY M, JOB H, WANG Y. Direct syngas hydrogenation over a Co-Ni bimetallic catalyst: Process parameter optimization[J]. Chem Eng Sci, 2015, 135: 266-273. doi: 10.1016/j.ces.2015.03.064
    [16] SHIMURA K, MIYAZAWA T, HANAOKA T, HIRATA S. Fischer-Tropsch synthesis over alumina supported bimetallic Co-Ni catalyst: Effect of impregnation sequence and solution[J]. J Mol Catal A: Chem, 2015, 407: 15-24. doi: 10.1016/j.molcata.2015.06.013
    [17] FARZANFAR J, REZVANI A R. Inorganic complex precursor route for preparation of high-temperature Fischer-Tropsch synthesis Ni-Co nanocatalysts[J]. Res Chem Intermed, 2015, 41(11): 8975-9001. doi: 10.1007/s11164-015-1942-4
    [18] CALDERONE V R, SHIJU N R, FERRE D C, ROTHENBERGA G. Bimetallic catalysts for the Fischer-Tropsch reaction[J]. Green Chem, 2011, 13(8): 1950-1959. doi: 10.1039/c0gc00919a
    [19] KEYSER M J, EVERSON R C, ESPINOZA R L. Fischer-Tropsch studies with cobalt-manganese oxide catalysts: Synthesis performance in a fixed bed reactor[J]. Appl Catal A: Gen, 1998, 171(1): 99-107. doi: 10.1016/S0926-860X(98)00083-0
    [20] DUVENHAGE D J, COVILLE N J. Fe:Co/TiO2 bimetallic catalysts for the Fischer-Tropsch reaction I. Characterization and reactor studies[J]. Appl Catal A: Gen, 1997, 153(1/2): 43-67.
    [21] DUVENHAGE D J, COVILLE N J. Fe: Co/TiO2 bimetallic catalysts for the Fischer-Tropsch reaction: part 2. the effect of calcination and reduction temperature[J]. Appl Catal A: Gen, 2002, 233(1/2): 63-75.
    [22] TIHAY F, ROGER A C, KIENNEMANN A, POURROY G. Fe-Co based metal/spinel to produce light olefins from syngas[J]. Catal Today, 2000, 58(4): 263-269. doi: 10.1016/S0920-5861(00)00260-1
    [23] MIRZAEI A A, HABIBPOUR R, KASHI E. Preparation and optimization of mixed iron cobalt oxide catalysts for conversion of synthesis gas to light olefins[J]. Appl Catal A: Gen, 2005, 296(2): 222-231. doi: 10.1016/j.apcata.2005.08.033
    [24] MA X, SUN Q, YING W, FANG D. Effects of the ratio of Fe to Co over Fe-Co/SiO2 bimetallic catalysts on their catalytic performance for Fischer-Tropsch synthesis[J]. J Nat Gas Chem, 2009, 18(2): 232-236. doi: 10.1016/S1003-9953(08)60102-4
    [25] DE LA PENA O'SHEA V A, ÁLÜAREZ-GALÜAN M C, CAMPOS-MARTIN J M, FIERRO J L G. Fischer-Tropsch synthesis on mono-and bimetallic Co and Fe catalysts in fixed-bed and slurry reactors[J]. Appl Catal A: Gen, 2007, 326(1): 65-73. doi: 10.1016/j.apcata.2007.03.037
    [26] YOKOTA K, FUJIMOTO K. Supercritical phase Fischer-Tropsch synthesis reaction[J]. Fuel, 1989, 68(2): 255-256.. doi: 10.1016/0016-2361(89)90335-9
    [27] SAVOST'YANOV A P, YAKOVENKOA R E, NAROCHNYI G B, LAPIDUS A L. Effect of the dilution of synthesis gas with nitrogen on the Fischer-Tropsch process for the production of hydrocarbons[J]. Solid Fuel Chem, 2015, 49(6): 356-359. doi: 10.3103/S0361521915060099
    [28] LU X, ZHU X, HILDEBRANDT D, LIU X, GLASSER D. A new way to look at Fischer-Tropsch Synthesis using flushing experiments[J]. Ind Eng Chem Res, 2011, 50(8): 4359-4365. doi: 10.1021/ie102095c
    [29] SCHULZ H. Major and minor reactions in Fischer-Tropsch synthesis on cobalt catalysts[J]. Top Catal, 2003, 26(1/4): 73-85. https://www.researchgate.net/publication/263210706_Major_and_Minor_Reactions_in_FischerTropsch_Synthesis_on_Cobalt_Catalysts
    [30] SCHULZ H, NIE Z, OUSMANOV F. Construction of the Fischer-Tropsch regime with cobalt catalysts[J]. Catal Today, 2002, 71(3/4): 351-360. https://www.researchgate.net/publication/244321498_Construction_of_the_Fischer-Tropsch_Regime_With_Cobalt_Catalysts
    [31] WILSON J, DE GROOT C. Atomic-scale restructuring in high-pressure catalysis [J]. J Phys Chem, 1995, 99: 7860-7866. doi: 10.1021/j100020a005
    [32] LIU Y, CHEN J, FANG K, WANG Y, SUN Y. A large pore-size mesoporous zirconia supported cobalt catalyst with good performance in Fischer-Tropsch synthesis[J]. Catal Commun, 2007, 8(6): 945-949. doi: 10.1016/j.catcom.2006.06.019
    [33] KHODAKOV A Y, GRIBOVOL-CONSTANT A, BECHARA R, ZHOLOBENKO V L. Pore size efects in Fischer Tropsch synthesis over cobalt-dupported mesoporous silicas[J]. J Catal, 2002, 206(2): 230-241. doi: 10.1006/jcat.2001.3496
    [34] OLEWSKI T, TODIC B, NOWICKI L, NIKACEVIC N, BUKUR D B. Hydrocarbon selectivity models for iron-based Fischer-Tropsch catalyst[J]. Chem Eng Res Des, 2015, 95: 1-11. doi: 10.1016/j.cherd.2014.12.015
    [35] YAN F, QIAN W, SUN Q, ZHANG H, YING W, FANG D. Product distributions and olefin-to-paraffin ratio over an iron-based catalyst for Fischer-Tropsch synthesis[J]. React Kinet Mech Cat, 2014, 113(2): 471-485. doi: 10.1007/s11144-014-0746-7
    [36] TSUBAKI N, FUJIMOTO K. Product control in Fischer-Tropsch synthesis[J]. Fuel Process Technol, 2000, 62(2/3): 173-186. https://www.researchgate.net/publication/257210954_Product_control_in_Fischer-Tropsch_synthesis
    [37] ERKEY C, RODDEN J B, AKGERMAN A. Diffusivities of synthesis gas and n-alkanes in Fischer-Tropsch wax[J]. Energy Fuels, 1990, 4(3): 275-276. doi: 10.1021/ef00021a010
    [38] IGLESIA E, REYES S C, MADON R J. Transport-enhanced alpha-olefin readsorption pathways in Ru-catalyzed hydrocarbon synthesis[J]. J Catal, 1991, 129(1): 238-256. doi: 10.1016/0021-9517(91)90027-2
    [39] SCHULZ H, CLAEYS M. Reactions of alpha-olefins of different chain length added during Fischer-Tropsch synthesis on a cobalt catalyst in a slurry reactor[J]. Appl Catal A: Gen, 1999, 186(1/2): 71-90. https://www.researchgate.net/publication/244106789_Reactions_of_a-olefins_of_different_chain_length_added_during_Fischer-Tropsch_synthesis_on_a_cobalt_catalyst_in_a_slurry_reactor
    [40] CHENG J, SONG T, HU P, LOK C M, ELLIS P, FRENCH S. A density functional theory study of the α-olefin selectivity in Fischer-Tropsch synthesis[J]. J Catal, 2008, 255(1): 20-28. doi: 10.1016/j.jcat.2008.01.027
    [41] KUIPERS E W, VINKENBURG I H, OOSTERBEEK H. Chain-length dependence of alpha-olefin readsorption in Fischer-Tropsch synthesis[J]. J Catal, 1995, 152(1): 137-146. doi: 10.1006/jcat.1995.1068
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  60
  • HTML全文浏览量:  28
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-03
  • 修回日期:  2016-04-06
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-07-10

目录

    /

    返回文章
    返回