留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Direct use of coke in a solid oxide fuel cell

XIE Yong-min LI Jiang-lin HOU Jin-xing WU Pei-jia LIU Jiang LIU Qing-sheng

谢永敏, 李江霖, 侯金醒, 吴沛佳, 刘江, 刘庆生. 固体氧化物燃料电池直接以焦炭为燃料的电性能[J]. 燃料化学学报(中英文), 2018, 46(10): 1168-1174.
引用本文: 谢永敏, 李江霖, 侯金醒, 吴沛佳, 刘江, 刘庆生. 固体氧化物燃料电池直接以焦炭为燃料的电性能[J]. 燃料化学学报(中英文), 2018, 46(10): 1168-1174.
XIE Yong-min, LI Jiang-lin, HOU Jin-xing, WU Pei-jia, LIU Jiang, LIU Qing-sheng. Direct use of coke in a solid oxide fuel cell[J]. Journal of Fuel Chemistry and Technology, 2018, 46(10): 1168-1174.
Citation: XIE Yong-min, LI Jiang-lin, HOU Jin-xing, WU Pei-jia, LIU Jiang, LIU Qing-sheng. Direct use of coke in a solid oxide fuel cell[J]. Journal of Fuel Chemistry and Technology, 2018, 46(10): 1168-1174.

固体氧化物燃料电池直接以焦炭为燃料的电性能

基金项目: 

the National Natural Science Foundation of China 51564019

详细信息
  • 中图分类号: O646

Direct use of coke in a solid oxide fuel cell

Funds: 

the National Natural Science Foundation of China 51564019

More Information
  • 摘要: 直接碳固体氧化物燃料电池(DC-SOFC)是一种潜在的固体碳燃料高效率、低污染发电技术。本研究报道了将工业焦炭直接用作管式DC-SOFC燃料的研究。制备了电极材料为Ag-GDC(钆掺杂氧化铈)的YSZ(钇稳定化氧化锆)电解质支撑型管式固体氧化物燃料电池(SOFC)。采用拉曼光谱、扫描电镜和X射线能谱仪对焦炭燃料进行了性质表征。结果表明,焦炭燃料呈微米级的颗粒状,并含有大量对Boudouard反应有利的缺陷结构。电池以纯焦炭为燃料在850℃取得的最大功率密度为149mW/cm2,在碳燃料表面负载能提高Boudouard反应速率的Fe催化剂后,最大功率密度提高至217mW/cm2。通过电化学测试和尾气表征,分析了恒电流放电过程中电池的性能衰减机制。测试结果证明了将焦炭直接用作全固态DC-SOFC的燃料产生电能的可行性。
    本文的英文电子版由Elsevier出版社在ScienceDirect上出版(http://www.sciencedirect.com/science/journal/18725813).
  • Figure  1  Schematic diagram of the DC-SOFC testing setup

    Figure  2  SEM images of (a) coke fuel and (b) Fe-loaded coke fuel, and (c) elemental distribution diagram for coke fuel

    Figure  3  Raman spectrum of a coke fuel sample

    Figure  4  SEM images of (a) the cross section of an as-prepared SOFC and (b) the surface of Ag-GDC electrode

    Figure  5  Electrical performance of a SOFC operated with humidified H2 as a fuel and ambient air as the oxidant

    Figure  6  Output performance of the DC-SOFCs operated at 850 ℃

    Figure  7  Discharge curve and production rates of CO and CO2 gas in the DC-SOFC operated at constant current of 1 A at 850 ℃, using Fe-loaded coke as fuel

    Figure  8  I-V-P characteristics of the DC-SOFC operated on Fe-loaded coke before and after discharging

    Table  1  Performance comparison of the presented DC-SOFCs with reported DC-SOFCs operated at 850 ℃

    Cell configuration Anode electrode Carbon fuel Pmax /(mW·cm-2) at 850 ℃ Reference
    Anode-supported Ni-ScSZ carbon black 104 [10]
    Anode-supported Ni-YSZ coal char 100 [19]
    Electrolyte-supported Ag-GDC Fe-loaded activated carbon 297 [23]
    Electrolyte-supported Ag-GDC coke 149 this work
    Electrolyte-supported Ag-GDC Fe-loaded coke 217 this work
    下载: 导出CSV
  • [1] ZHAO Y, WANG S, DUAN L, LEI Y, CAO P, HAO J. Primary air pollutant emissions of coal-fired power plants in China:Current status and future prediction[J]. Atmos Environ, 2008, 42(36):8442-8452. doi: 10.1016/j.atmosenv.2008.08.021
    [2] CAO D, SUN Y, WANG G. Direct carbon fuel cell:Fundamentals and recent developments[J]. J Power Sources, 2007, 167(2):250-257. doi: 10.1016/j.jpowsour.2007.02.034
    [3] GIDDEY S, BADWAL S P S, KULKARNI A, MUNNINGS C. A comprehensive review of direct carbon fuel cell technology[J]. Prog Energy Combust, 2012, 38(3):360-399. doi: 10.1016/j.pecs.2012.01.003
    [4] GVR T M. Critical review of carbon conversion in "carbon fuel cells"[J]. Chem Rev, 2013, 113(8):6179-6206. doi: 10.1021/cr400072b
    [5] LIU J, ZHOU M Y, ZHANG Y P, LIU Z J, XIE Y M, CAI W Z, YU F Y, ZHOU Q, WANG X Q, NI M, LIU M L. Electrochemical oxidation of carbon at high temperature:Principles and applications[J]. Energy Fuels, 2017, 32(4):4107-4117. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_91595f011edcc3ebcbbdfdebefb4b875
    [6] NAKAGAWA N, ISHIDA M. Performance of an internal direct-oxidation carbon fuel cell and its evaluation by graphic exergy analysis[J]. Ind Eng Chem Res, 1988, 27(7):1181-1185. doi: 10.1021/ie00079a016
    [7] XIE Y M, TANG Y B, LIU J. A verification of the reaction mechanism of direct carbon solid oxide fuel cells[J]. J Solid State Electr, 2013, 17(1):121-127. doi: 10.1007/s10008-012-1866-5
    [8] TANG Y B, LIU J. Fueling solid oxide fuel cells with activated carbon[J]. Acta Phys Chim Sin, 2010, 26(5):1191-1194. http://en.cnki.com.cn/Article_en/CJFDTotal-WLHX201005003.htm
    [9] TANG Y B, LIU J. Effect of anode and boudouard reaction catalysts on the performance of direct carbon solid oxide fuel cells[J]. Int J Hydrogen Energy, 2010, 35(20):11188-11193. doi: 10.1016/j.ijhydene.2010.07.068
    [10] LIU R Z, ZHAO C H, LI J L, ZENG F R, WANG S R, WEN T L, WEN Z Y. A novel direct carbon fuel cell by approach of tubular solid oxide fuel cells[J]. J Power Sources, 2010, 195(2):480-482. doi: 10.1016/j.jpowsour.2009.07.032
    [11] WU Y Z, SU C, ZHANG C M, RAN R, SHAO Z P. A new carbon fuel cell with high power output by integrating with in situ catalytic reverse Boudouard reaction[J]. Electrochem Commun, 2009, 11(6):1265-1268. doi: 10.1016/j.elecom.2009.04.016
    [12] BAI Y H, LIU Y, TANG Y B, XIE Y M, LIU J. Direct carbon solid oxide fuel cell-a potential high performance battery[J]. Int J Hydrogen Energy, 2011, 36(15):9189-9194. doi: 10.1016/j.ijhydene.2011.04.171
    [13] YU F Y, ZHANG Y P, YU L, CAI W Z, YUAN L L, LIU J, LIU M L. All-solid-state direct carbon fuel cells with thin yttrium-stabilized-zirconia electrolyte supported on nickel and iron bimetal-based anodes[J]. Int J Hydrogen Energy, 2016, 41(21):9048-9058. doi: 10.1016/j.ijhydene.2016.04.063
    [14] CAI W Z, ZHOU Q, XIE Y M, LIU J, LONG G Q, CHENG S, LIU M L. A direct carbon solid oxide fuel cell operated on a plant derived biofuel with natural catalyst[J]. Appl Energy, 2016, 179:1232-1241. doi: 10.1016/j.apenergy.2016.07.068
    [15] ZHOU Q, CAI W Z, ZHANG Y P, LIU J, YUAN L L, YU F Y, WANG X Q, LIU M L. Electricity generation from corn cob char though a direct carbon solid oxide fuel cell[J]. Biomass Bioenergy, 2016, 91:250-258. doi: 10.1016/j.biombioe.2016.05.036
    [16] RADY A C, GIDDEY S, KULKARNI A, BADWAL S P S, BHATTACHARYA S. Direct carbon fuel cell operation on brown coal with a Ni-GDC-YSZ anode[J]. Electrochim Acta, 2015, 178:721-731. doi: 10.1016/j.electacta.2015.08.064
    [17] JIAO Y, ZHAO J H, AN W T, ZHANG L Q, SHA Y J, YANG G M, SHAO Z P, ZHU Z P, LI S D. Structurally modified coal char as a fuel for solid oxide-based carbon fuel cells with improved performance[J]. J Power Sources, 2015, 288:106-114. doi: 10.1016/j.jpowsour.2015.04.121
    [18] XU K, CHEN C, LIU H, TIAN Y, LI X, YAO H. Effect of coal based pyrolysis gases on the performance of solid oxide direct carbon fuel cells[J]. Int J Hydrogen Energy, 2014, 39:17845-17851 doi: 10.1016/j.ijhydene.2014.08.133
    [19] JIAO Y, TIAN W J, CHEN H L, SHI H G, YANG B B, LI C, SHAO Z P, ZHU Z P, LI S D. In situ catalyzed boudouard reaction of coal char for solid oxide-based carbon fuel cells with improved performance[J]. Appl Energy, 2015, 141:200-208. doi: 10.1016/j.apenergy.2014.12.048
    [20] XIE Y M, CAI W Z, XIAO J, TANG Y B, LIU J, LIU M L. Electrochemical gas-electricity cogeneration through direct carbon solid oxide fuel cells[J]. J Power Sources, 2015, 277:1-8. doi: 10.1016/j.jpowsour.2014.12.016
    [21] GUZMAN F, SINGH R, CHUANG S S C. Direct use of sulfur-containing coke on a Ni-yttria-stabilized zirconia anode solid oxide fuel cell[J]. Energy Fuels, 2011, 25(5):2179-2186. doi: 10.1021/ef1016363
    [22] XIE Y M, WANG X Q, LIU J, YU C L. Fabrication and performance of tubular electrolyte-supporting direct carbon solid oxide fuel cell by dip coating technique[J]. Acta Phys Chim Sin, 2017, 33(2):386-392. doi: 10.3866/PKU.WHXB201610104
    [23] LIU J, SU W H, LÜ Z, JI Y, PEI L, LIU W, HE T M. A rapid sealing method for solid oxide fuel cell using metal conductive adhesive: CN, 02133049.2[P]. 2002-09-25.
    [24] ZHANG L, XIAO J, XIE Y M, TANG Y B, LIU J, LIU M L. Behavior of strontium-and magnesium-doped gallate electrolyte in direct carbon solid oxide fuel cells[J]. J Alloy Compound, 2014, 608:272-277. doi: 10.1016/j.jallcom.2014.04.154
    [25] CAI W Z, LIU J, XIE Y M, XIAO J, LIU M L. An investigation on the kinetics of direct carbon solid oxide fuel cells[J]. J Solid State Electr, 2016, 20(8):2207-2216. doi: 10.1007/s10008-016-3216-5
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  102
  • HTML全文浏览量:  49
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-15
  • 修回日期:  2018-08-18
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-10-10

目录

    /

    返回文章
    返回