留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属负载型分子筛催化剂在NH3-SCR反应中水热稳定性的研究进展

郑伟 陈佳玲 郭立 张文博 赵浩然 吴晓琴

郑伟, 陈佳玲, 郭立, 张文博, 赵浩然, 吴晓琴. 金属负载型分子筛催化剂在NH3-SCR反应中水热稳定性的研究进展[J]. 燃料化学学报(中英文), 2020, 48(10): 1193-1207.
引用本文: 郑伟, 陈佳玲, 郭立, 张文博, 赵浩然, 吴晓琴. 金属负载型分子筛催化剂在NH3-SCR反应中水热稳定性的研究进展[J]. 燃料化学学报(中英文), 2020, 48(10): 1193-1207.
ZHENG Wei, CHEN Jia-ling, GUO Li, ZHANG Wen-bo, ZHAO Hao-ran, WU Xiao-qin. Research progress of hydrothermal stability of metal-based zeolite catalysts in NH3-SCR reaction[J]. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1193-1207.
Citation: ZHENG Wei, CHEN Jia-ling, GUO Li, ZHANG Wen-bo, ZHAO Hao-ran, WU Xiao-qin. Research progress of hydrothermal stability of metal-based zeolite catalysts in NH3-SCR reaction[J]. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1193-1207.

金属负载型分子筛催化剂在NH3-SCR反应中水热稳定性的研究进展

基金项目: 

国家自然科学基金 22002114

湖北省自然科学基金 2018CFB361

武汉市科技局 2018060401011311

详细信息
  • 中图分类号: X511

Research progress of hydrothermal stability of metal-based zeolite catalysts in NH3-SCR reaction

Funds: 

the National Natural Science Foundation of China 22002114

The Natural Science Foundation of Hubei Province 2018CFB361

The Wuhan Science and Technology Bureau 2018060401011311

More Information
  • 摘要: NOx控制是目前大气污染控制领域的重要研究内容,NH3选择性催化还原技术(NH3-SCR)是消除NOx最有效的技术之一,其核心是高性能催化剂的开发。本研究综述了金属负载型分子筛催化剂(Cu基和Fe基分子筛催化剂)的NH3-SCR活性、水热稳定性以及水热老化失活机制,并对影响催化剂水热稳定性的因素(包括Si/Al比、分子筛拓扑结构、活性金属负载量、粒径和合成方法等)进行了系统阐述,总结了一些有效提高催化剂水热稳定性的改性方法,比如磷改性、第二活性金属改性、碱金属改性和外表面改性等。最后,对进一步提高金属负载型分子筛催化剂在NH3-SCR反应中的水热稳定性进行了展望。
  • 图  1  用EPR估算的新鲜(Fresh)和不同温度(550-900 ℃)水热老化后(HTA)的Cu/SSZ-13样品(Si/Al=12, Cu负载量=2.1%)中Cu2+、Cu(OH)+和CuOx的含量; 除HTA-900样品仅老化2 h外, 其余HTA样品在含10%水蒸气的流动空气中水热老化16 h[36]

    Figure  1  Estimation of Cu2+, Cu(OH)+ and CuOx in fresh and HTA (high temperature aging) Cu/SSZ-13 samples (Si/Al = 12, Cu loading = 2.1%) with EPR. The HTA samples were hydrothermally aged in flowing air containing 10% water vapor for 16 h at different temperatures (for example, HTA-550 represents treating at 550 ℃), except for HTA-900, which was only aged for 2 h[36] (with permissions from ACS publications)

    图  2  SSZ-13分子筛水热老化处理下的脱铝机制[40]

    Figure  2  Dealumination process of SSZ-13 zeolite during hydrothermal aging process[40] (with permissions from Elsevier)

    图  3  Fe-ZSM-5催化剂的水热老化机制[52]

    Figure  3  Hydrothermal aging mechanism of Fe-ZSM-5 catalyst[52] (with permissions from Elsevier)

    图  4  水对SAPO-34骨架结构的破坏以及Cu2+保护SAPO-34骨架结构示意图[86]

    Figure  4  Destruction of SAPO-34 zeolite by water and the protection effect of Cu2+ to SAPO-34 in presence of water[86] (with permissions from Elsevier)

  • [1] ZHANG R D, LIU N, LEI Z G, CHEN B H. Selective transformation of various nitrogen-containing exhaust gases toward N2 over zeolite catalysts[J]. Chem Rev, 2016, 116(6):3658-3721. doi: 10.1021/acs.chemrev.5b00474
    [2] LI J H, CHANG H Z, MA L, HAO J M, YANG R T. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts-A review[J]. Catal Today, 2011, 175(1):147-156. http://www.sciencedirect.com/science/article/pii/S0920586111002434
    [3] SHAN W P, SONG H. Catalysts for the selective catalytic reduction of NOx with NH3 at low temperature[J]. Catal Sci Technol, 2015, 5(9):4280-4288. doi: 10.1039/C5CY00737B
    [4] BEALE A M, GAO F, LEZCANO-GONZALEZ I, PEDEN C H, SZANYI J. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials[J]. Chem Soc Rev, 2015, 44(20):7371-7405. doi: 10.1039/C5CS00108K
    [5] GUAN B, ZHAN Reggie, LIN H, ZHEN H. Review of state of the art technologies of selective catalytic reduction of NOx from diesel engine exhaust[J]. Appl Therm Eng, 2014, 66(1/2):395-414. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2cdcdc4b8f37de474afbaa45421a7749
    [6] BRANDENBERGER S, KROCHER O, TISSLER A, RODERIK A. The state of the art in selective catalytic reduction of NOx by ammonia using metal-exchanged zeolite catalysts[J]. Catal Rev, 2008, 50(4):492-531. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=277a26bc87ad6c96721f19cc69d98d90
    [7] PARK J H, PARK H J, BAIK J H, NAM I S, SHIN C H, LEE J H, CHO B K, OH S H. Hydrothermal stability of Cu/ZSM5 catalyst in reducing NO by NH3 for the urea selective catalytic reduction process[J]. J Catal, 2006, 240(1):47-57. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4f72f19d59c5af4fddcbfc8b430c6b33
    [8] UPAKUL D, LEZCANO-GONZALEZ I, WECKHUYSEN B M, BEALE A M. Local environment and nature of Cu active sites in zeolite-based catalysts for the selective catalytic reduction of NOx[J]. ACS Catal, 2013, 3(3):413-427. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=15a229f7fbb0a3614f4d8fecb9f4180a
    [9] ZHAO Y G, HU J, HUA L, SHUAI S J, WANG J X. Ammonia storage and slip in a urea selective catalytic reduction catalyst under steady and transient conditions[J]. Ind Eng Chem Res, 2011, 50(21):11863-11871. doi: 10.1021/ie201045w
    [10] MA L, CHENG Y S, CAVATAIO G, MCCABE R W. FU L X, LI J H. In situ DRIFTS and temperature-programmed technology study on NH3-SCR of NO over Cu-SSZ-13 and Cu-SAPO-34 catalysts[J]. Appl Catal B, 2014, 156/157:428-437. doi: 10.1016/j.apcatb.2014.03.048
    [11] GUO X Y, BARTHOLOMEW C, HECKER W, BAXTER L L. Effects of sulfate species on V2O5/TiO2 SCR catalysts in coal and biomass-fired systems[J]. Appl Catal B, 2009, 92(1/2):30-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=14af027ca4325869977c897c934d5b1a
    [12] JOHNSON T V. Review of diesel emissions and control[J]. Int J Engine Res, 2009, 10(5):275-285. doi: 10.1243/14680874JER04009
    [13] 史安举. V2O5-WO3-TiO2体系改性NH3-SCR催化剂的催化活性及水热定性研究[D].天津: 天津大学, 2011.

    SHI An-ju. Study on catalytic activity and hydrothermal characterization of NH3-SCR catalyst modified by V2O5-WO3-TiO2 system[D]. Tianjin: Tianjin University, 2011.
    [14] 崔洪丽.一步法合成不同铜含量Cu-SAPO-34分子筛及其NH3-SCR活性和水热稳定性研究[D].天津: 天津大学, 2016.

    CUI Hong-li. The NH3-SCR performance and hydrothermal stability of one-pot synthesized Cu-SAPO-34 catalysts with different copper contents[D]. Tianjin: Tianjin University, 2016.
    [15] ZHANG S G, ZHANG B L, LIU B, SUN S L. A review of Mn-containing oxide catalysts for low temperature selective catalytic reduction of NOx with NH3:reaction mechanism and catalyst deactivation[J]. RSC Adv, 2017, 7(42):26226-26242. doi: 10.1039/C7RA03387G
    [16] YU Y X, TAN W, AN D Q, TANG C J, ZOU W X, GE C Y, TONG Q, GAO F, SUN J F, DONG L. Activity enhancement of WO3 modified FeTiOx catalysts for the selective catalytic reduction of NOx by NH3[J]. Catal Today, 2019, In press. http://www.sciencedirect.com/science/article/pii/S1385894716305502
    [17] CHENG K, SONG W Y, CHENG Y, ZHENG H L, WANG L U, LIU J, ZHAO Z, WEI Y C. Enhancing the low temperature NH3-SCR activity of FeTiOx catalysts via Cu doping:a combination of experimental and theoretical study[J]. RSC Adv, 2018, 8:19301-19309. doi: 10.1039/C8RA02931H
    [18] YAO X J, CHEN L, CAO J, CHEN Y, TIAN M, YANG F M, SUN J F, TANG C J, DONG L. Enhancing the deNOx performance of MnOx/CeO2-ZrO2 nanorod catalyst for low-temperature NH3-SCR by TiO2 modification[J]. Chem Eng J, 2019, 369:46-56. doi: 10.1016/j.cej.2019.03.052
    [19] LI L L, TAN W, WEI X Q, FAN Z X, LIU A N, GUO K, MA K L, YU S H, GE C Y, TANG C J, DONG L. Mo doping as an effective strategy to boost low temperature NH3-SCR performance of CeO2/TiO2 catalysts[J]. Catal Commun, 2018, 114:10-14. doi: 10.1016/j.catcom.2018.05.015
    [20] YANG C, YANG J, JIAO Q R, ZHAO D, ZHANG Y X, LIU L, HU G, LI J L. Promotion effect and mechanism of MnOx doped CeO2 nano-catalyst for NH3-SCR[J]. Ceram Int, 2020, 46:4394-4401. doi: 10.1016/j.ceramint.2019.10.163
    [21] MENG Q N, CUI J N, WANG K, TANG Y F, ZHAO K, HUANG L. Facile preparation of hollow MnOx-CeO2 composites with low Ce content and their catalytic performance in NO oxidation[J]. Mol Catal, 2020, 493:111107-111116. doi: 10.1016/j.mcat.2020.111107
    [22] GAO F Y, TANG X L, YIH H, ZHAO S Z, WANG J G, SHI Y R, MENG X M. Novel Co- or Ni-Mn binary oxide catalysts with hydroxyl groups for NH3-SCR of NOx at low temperature[J]. Appl Surf Sci, 2018, 443:103-113. doi: 10.1016/j.apsusc.2018.02.151
    [23] YANG G, ZHAO H T, LUO X, SHI K Q, ZHAO H B, WANG W K, CHEN Q H, FAN H, WU T. Promotion effect and mechanism of the addition of Mo on the enhanced low temperature SCR of NOx by NH3 over MnOx/γ-Al2O3 catalysts[J]. Appl Catal B, 2019, 245:743-752. doi: 10.1016/j.apcatb.2018.12.080
    [24] 喻成龙, 黄碧纯, 杨颖欣.分子筛应用于低温NH3-SCR脱硝催化剂的研究进展[J].华南理工大学学报, 2015, 43(3):143-151. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnlgdxxb201503021

    YU Chen-long, HUANG Bi-chun, YANG Yin-xin. Review on application of molecular sieve to denitration catalysts for low-temperature NH3-SCR[J]. J South China Univ Techno, 2015, 43(3):143-151. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnlgdxxb201503021
    [25] WANG A Y, WANG Y L, WALTER E D, WASHTON N M, GUO Y L, LU G Z, PEDEN C H F, GAO F. NH3-SCR on Cu, Fe and Cu + Fe exchanged beta and SSZ-13 catalysts:hydrothermal aging and propylene poisoning effects[J]. Catal Today, 2019, 320:91-99. doi: 10.1016/j.cattod.2017.09.061
    [26] MONTENEGRO G, ONORATI A. Urea-SCR technology for deNOx after treatment of diesel exhausts[M]. Springer New York Heidelberg Dordrecht London, 2014.
    [27] WANG A Y, WANG Y L, WALTER E D, KUKKADAPU R K, GUO Y L, Lu G Z, WEBER R S, WANG Y, PEDEN C H F, GAO F. Catalytic N2O decomposition and reduction by NH3 over Fe/Beta and Fe/SSZ-13 catalysts[J]. J Catal, 2018, 358:199-210. doi: 10.1016/j.jcat.2017.12.011
    [28] JOAQUIN P P, MANUEL S S. Structure and reactivity of metals in zeolite materials[M]. Springer Nature Switzerland, 2018.
    [29] KORHONEN S T, FICKEL D W, LOBO R F, WECKHUYSEN B M, BEALE A M. Isolated Cu2+ ions:active sites for selective catalytic reduction of NO[J]. Chem Comm, 2011, 47(2):800-802. doi: 10.1039/C0CC04218H
    [30] LOMACHENKO K A, BORFECCHIA E, NEGRI C, BERLIER G, LAMBERTI C, BEATO P, FALSIG H, BORDIGA S. The Cu-CHA deNOx catalyst in action:temperature-dependent NH3-SCR monitored by operando X-ray absorption and emission spectroscopies[J]. J Am Chem Soc, 2016, 138(37):12025-12028. doi: 10.1021/jacs.6b06809
    [31] BEALE A M, LEZCANO-GONZALEZ I, SLAWINSKI W A, SLAWINSKI W A, WRAGG D S. Correlation between Cu ion migration behaviour and deNOx activity in Cu-SSZ-13 for the standard NH3-SCR reaction[J]. Chem Comm, 2016, 52(36):6170-6173. doi: 10.1039/C6CC00513F
    [32] GAO F, WALTER E D, KARP E M, LUO J Y, RUSSELL G T, KWAK J H, JANOS S, PEDEN C H F. Structure-activity relationships in NH3-SCR over Cu-SSZ-13 as probed by reaction kinetics and EPR studies[J]. J Catal, 2013, 300:20-29. doi: 10.1016/j.jcat.2012.12.020
    [33] AEDERSEN C W, BERMHOOLM M, VENNESTROM P N, BLICHFELD A B, LUNDEGAARD L F, IVERSEN B B. Location of Cu2+ in CHA zeolite investigated by X-ray diffraction using the rietveld/maximum entropy method[J]. IUCrJ, 2014, 1:382-386. doi: 10.1107/S2052252514020181
    [34] PAOLUCCI, CHRISTOPHER, PAREKH A A, KHURANA, ISHANT, DI I, JOHN R, LI H, ALBARRACINl C, JONATAN D, SHIH, ARTHUR, ANGGARA, TRUNOJOYO, DELGASS, NICHOLAS W, MILLER, JEFFREY T, RIBEIRO, FABIO H, GOUNDER, RAJAMANI, SCHNEIDER, WILLIAM F. Catalysis in a cage:condition-dependent speciation and dynamics of exchanged Cu cations in SSZ-13 zeolites[J]. J Am Chem Soc, 2016, 138(18):6028-6048. doi: 10.1021/jacs.6b02651
    [35] GAO F, WASHTON N M, WANG Y L, KOLLAR M, SZANYI J, PEDEN C H F. Effects of Si/Al ratio on Cu/SSZ-13 NH3-SCR catalysts:implications for the active Cu species and the roles of Brønsted acidity[J]. J Catal, 2015, 331:25-38. doi: 10.1016/j.jcat.2015.08.004
    [36] SONG J, WANG Y L, WALTER E D, WASHTON N M, MEI D H, KOVARIK L, ENGELHARD M H, PRODINGER S, WANG Y, PADEN C H F, GAO F. Toward rational design of Cu/SSZ-13 selective catalytic reduction catalysts:implications from atomic-level understanding of hydrothermal stability[J]. ACS Catal, 2017, 7(12):8214-8227. doi: 10.1021/acscatal.7b03020
    [37] KHARAS K C C, HJROBOTA, LIU D J. Deactivation in Cu-ZSM-5 lean-burn catalysts[J]. Appl Catal B, 1993, 2(2/3):225-237. http://www.sciencedirect.com/science/article/pii/092633739380050N
    [38] YAN J Y, LEI G D, SSCHTER W M H, KUNG A H H. Deactivation of Cu/ZSM-5 catalysts for lean NOx reduction characterization of changes of Cu state and zeolite support[J]. J Catal, 1996, 161(1):43-54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6ca988e3134d31636ab8c9c58133478f
    [39] VENNESTROM P N R, JANSSENS T V W, KUSTOV A, GRILL M, PUIG-MOLINA A, LUNDEGRRD L F, TIRUVALAM R R, CONCEPCION P, CORMA A. Influence of lattice stability on hydrothermal deactivation of Cu-ZSM-5 and Cu-IM-5 zeolites for selective catalytic reduction of NOx by NH3[J]. J Catal, 2014, 309:477-490. doi: 10.1016/j.jcat.2013.10.017
    [40] ZHAO H W, ZHAO Y N, LIU M K, LI X H, MA Y H, YONG X, CHEN H, LI Y D. Phosphorus modification to improve the hydrothermal stability of a Cu-SSZ-13 catalyst for selective reduction of NOx with NH3[J]. Appl Catal B, 2019, 252:230-239. doi: 10.1016/j.apcatb.2019.04.037
    [41] GAO F, SZANYI J. On the hydrothermal stability of Cu/SSZ-13 SCR catalysts[J]. Appl Catal A, 2018, 560:185-194. doi: 10.1016/j.apcata.2018.04.040
    [42] SU W, LI Z, PENG Y, LI J. Correlation of the changes in the framework and active Cu sites for typical Cu/CHA zeolites (SSZ-13 and SAPO-34) during hydrothermal aging[J]. Phys Chem Chem Phys, 2015, 17(43):29142-29149. doi: 10.1039/C5CP05128B
    [43] MAO Y, WANG Z Y, WANG H F, HU P. Understanding catalytic reactions over zeolites:a density functional theory study of selective catalytic reduction of NOx by NH3 over Cu-SAPO-34[J]. ACS Catal, 2016, 6(11):7882-7891. doi: 10.1021/acscatal.6b01449
    [44] CUI Y R, WANG Y L, WALTER E D, SZANJI J, WANG Y, GAO F. Influences of Na+ co-cation on the structure and performance of Cu/SSZ-13 selective catalytic reduction catalysts[J]. Catal Today, 2020, 339:233-240. doi: 10.1016/j.cattod.2019.02.037
    [45] GAO F, WANG Y L, WASHTON N M, KOLLAR M, SZANYI J, PEDEN C H F. Effects of alkali and alkaline earth cocations on the activity and hydrothermal stability of Cu/SSZ-13 NH3-SCR Catalysts[J]. ACS Catal, 2015, 5(11):6780-6791. doi: 10.1021/acscatal.5b01621
    [46] GAO F, ZHENG Y, KUKKADAPU R K, WANG Y L, WALTER E D, SCHWENZER B, SZANYI J, PEDEN C H F. Iron loading effects in Fe/SSZ-13 NH3-SCR catalysts:nature of the Fe ions and structure-function relationships[J]. ACS Catal, 2016, 6(5):2939-2954. doi: 10.1021/acscatal.6b00647
    [47] BRANDENBERRGER S, KROCHER O, TISSLER A, ALTHOFFl R. The determination of the activities of different iron species in Fe-ZSM-5 for SCR of NO by NH3[J]. Appl Catal B, 2010, 95(3/4):348-357. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=aa341da8d553df7b618a8f666b872f01
    [48] MARTIN H, JOSEF B M, GRUNWALDT J D, DAHL S. The role of monomeric iron during the selective catalytic reduction of NOx by NH3 over Fe-BEA zeolite catalysts[J]. Appl Catal B, 2009, 93(1/2):166-176. http://www.sciencedirect.com/science/article/pii/S0926337309003804
    [49] SHI X Y, LIU F D, SHAN W P, HE H. Hydrothermal deactivation of Fe-ZSM-5 prepared by different methods for the selective catalytic reduction of NOx with NH3[J]. Chinese J Catal, 2012, 33(2/3):454-464. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cuihuaxb201203011
    [50] LIN Q J, Feng ENG X, ZHANG H L, LIN C L, LIU S, XU H D, CHEN Y Q. Hydrothermal deactivation over CuFe/BEA for NH3-SCR[J]. J Ind Eng Chem, 2018, 65:40-50. doi: 10.1016/j.jiec.2018.04.009
    [51] KOVARIK L, WASHTON N M, KUKKADAPU R, DEVARAJ A, WANG A Y, WANG Y L, SZANYI J, PEDEN C H F, GAO F. Transformation of active sites in Fe/SSZ-13 SCR catalysts during hydrothermal aging:A spectroscopic, microscopic, and kinetics study[J]. ACS Catal, 2017, 7(4):2458-2470. doi: 10.1021/acscatal.6b03679
    [52] BRANDENBERGER S, KROCHER O, CASAPU M, TISSLER A, RODERIK A. Hydrothermal deactivation of Fe-ZSM-5 catalysts for the selective catalytic reduction of NO with NH3[J]. Appl Catal B, 2011, 101:649-659. doi: 10.1016/j.apcatb.2010.11.006
    [53] GAO F, WANG Y L, KOLLAR M, WASHTON N M, SZANYI J, PEDEN C H F. A comparative kinetics study between Cu/SSZ-13 and Fe/SSZ-13 SCR catalysts[J]. Catal Today, 2015, 258:347-358. doi: 10.1016/j.cattod.2015.01.025
    [54] GAO F, WANG Y L, KOLLAR M, KUKKADAPU R, WASHTON N M, WANG Y L, SZANYI J, PEDEN C H F. Fe/SSZ-13 as an NH3-SCR catalyst:a reaction kinetics and FTIR/Mössbauer spectroscopic study[J]. Appl Catal B, 2015, 164:407-419. doi: 10.1016/j.apcatb.2014.09.031
    [55] GAO F, SZANYI J, WANG Y L, SSHENZER B, KOLLAR M, PEDEN C H F. Hydrothermal aging effects on Fe/SSZ-13 and Fe/Beta NH3-SCR catalysts[J]. Top Catal, 2016, 59(10/12):882-886. http://smartsearch.nstl.gov.cn/paper_detail.html?id=0e36f32e90b8f4cc37eb6ec75e2057a7
    [56] PIETERSE J A Z, PIRNGRUBER G D, VAN B J A, BOONEVELD S. Hydrothermal stability of Fe-ZSM-5 and Fe-BEA prepared by wet ion-exchange for N2O decomposition[J]. Stud Surf Sci Catal, 2007, 170:1386-1391. doi: 10.1016/S0167-2991(07)81005-6
    [57] FAN C, CHEN Z, PANG L, MING S J, ZHANG X F, ALBERT K B, LIU P, CHEN H P, LI T. The influence of Si/Al ratio on the catalytic property and hydrothermal stability of Cu-SSZ-13 catalysts for NH3-SCR[J]. Appl Catal A, 2018, 550:256-265. doi: 10.1016/j.apcata.2017.11.021
    [58] JIANG H, GUAN B, LIN H, ZHEN H. Cu/SSZ-13 zeolites prepared by in situ hydrothermal synthesis method as NH3-SCR catalysts Influence of the Si/Al ratio on the activity and hydrothermal properties[J]. Fuel, 2019, 255:115587-115602. doi: 10.1016/j.fuel.2019.05.170
    [59] VERMA A A, BATES S A, ANGGARA T, PAOLUCCI C, PAREKH A A, KAMASAMUDRAM K, YEZERESTS A, MILLER J T, DELGASSe W N, SCHNEIDER W F, RIBEIRO F H. NO oxidation:A probe reaction on Cu/SSZ-13[J]. J Catal, 2014, 312:179-190. doi: 10.1016/j.jcat.2014.01.017
    [60] SCHMIEG S J, OH S H, KIM C H, BROWN D B, LEE J H, PEDEN C H F, KIM D H. Thermal durability of Cu-CHA NH3-SCR catalysts for diesel NOx reduction[J]. Catal Today, 2012, 184(1):252-261. http://www.sciencedirect.com/science/article/pii/S0920586111007607
    [61] GAO F, MEI D H, WANG Y L, SZANYI J, PEDEN C H F. Selective catalytic reduction over Cu/SSZ-13 linking homo- and heterogeneous catalysis[J]. J Am Chem Soc, 2017, 139:4935-4942. doi: 10.1021/jacs.7b01128
    [62] LUO J Y, WANG D, KUMAR A, LI J H, KAMASAMUDRAM K, CURRIRE N, ALEKSEY Y. Identification of two types of Cu sites in Cu/SSZ-13 and their unique responses to hydrothermal aging and sulfur poisoning[J]. Catal Today, 2016, 267:3-9. doi: 10.1016/j.cattod.2015.12.002
    [63] KWAK J H, TRAN D, BURTOKN S D, SZANYI J, LEE J H, PEDEN C H F. Effects of hydrothermal aging on NH3-SCR reaction over Cu/zeolites[J]. J Catal, 2012, 287:203-209. doi: 10.1016/j.jcat.2011.12.025
    [64] MA L, CHENG Y S, CAVATAIO G, MCCABE R W, FU L X, LI J H. Characterization of commercial Cu-SSZ-13 and Cu-SAPO-34 catalysts with hydrothermal treatment for NH3-SCR of NOx in diesel exhaust[J]. Chem Eng J, 2013, 225:323-330. doi: 10.1016/j.cej.2013.03.078
    [65] BLAKEMAN P G, BURKHOLDER E M, CHEN H Y, COLLIER JI E, FEDEYKO J M, JOBSON H, RAJARAM R R. The role of pore size on the thermal stability of zeolite supported Cu SCR catalysts[J]. Catal Today, 2014, 231:56-63. doi: 10.1016/j.cattod.2013.10.047
    [66] KWAK J H, TONKYN R G, KIM D H, SZANYI J, PEDEN C H F. Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3[J]. J Catal, 2010, 275(2):187-190. http://www.sciencedirect.com/science/article/pii/S0021951710002691
    [67] YE Q, WANG L F, YANG R T. Activity, propene poisoning resistance and hydrothermal stability of copper exchanged chabazite-like zeolite catalysts for SCR of NO with ammonia in comparison to Cu/ZSM-5[J]. Appl Catal A, 2012, 427-428:24-34. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=81a1674535bc084f9b81049fe29115a3
    [68] SHUAN H, YE Q, CHENG S Y, KANG T F, DAI H X. Effect of the hydrothermal aging temperature and Cu/Al ratio on the hydrothermal stability of CuSSZ-13 catalysts for NH3-SCR[J]. Catal Sci Technol, 2016, 10:1-3. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=72c331bc0e9ab208b9909a0399f2e6e2
    [69] LUO J Y, GAO F, KAMASAMUDRAM K, CURRIER N, PEDEN C H F, YEZERETS A. New insights into Cu/SSZ-13 SCR catalyst acidity. Part I:nature of acidic sites probed by NH3 titration[J]. J Catal, 2017, 348:291-299. doi: 10.1016/j.jcat.2017.02.025
    [70] WANG A, CHEN Y, WALTER E. D, WASHTON N M, MEI D, VARGA T, WANG Y, SZANYI J, WANG Y, PEDEN C H F, GAO F. Unraveling the mysterious failure of Cu/SAPO-34 selective catalytic reduction catalysts[J]. Nat Commun, 2019, 10(1):1137-1149. http://www.nature.com/articles/s41467-019-09021-3
    [71] WANG A Y, ARORA P, BERNIN D, KUMAR A, KAMASAMUDRAM K, OLSSON L. Investigation of the robust hydrothermal stability of Cu/LTA for NH3-SCR reaction[J]. Appl Catal B, 2019, 246:242-253. doi: 10.1016/j.apcatb.2019.01.039
    [72] JO D H, PARK G T, RYU T, HONG S B. Economical synthesis of high-silica LTA zeolites:A step forward in developing a new commercial NH3-SCR catalyst[J]. Appl Catal B, 2019, 243:212-219. doi: 10.1016/j.apcatb.2018.10.042
    [73] SHAN Y L, SHAN W P, SHI X Y, DU J P, YU Y B, HE H. A comparative study of the activity and hydrothermal stability of Al-rich Cu-SSZ-39 and Cu-SSZ-13[J]. Appl Catal B, 2020, 264:118511-118523. doi: 10.1016/j.apcatb.2019.118511
    [74] WANG Y, LI G G, ZHANG S Q, ZHANG X Y, ZHANG X, HAO Z P. Promoting effect of Ce and Mn addition on Cu-SSZ-39 zeolites for NH3-SCR reaction:Activity, hydrothermal stability, and mechanism study[J]. Chem Eng J, 2020, 393:124782-124795. doi: 10.1016/j.cej.2020.124782
    [75] ZHANG N N, XIN Y, LI Q, MA X C, QI Y X, ZHENG L R, ZHANG Z L. Ion exchange of one-pot synthesized Cu-SAPO-44 with NH4NO3 to promote Cu dispersion and activity for selective catalytic reduction of NOx with NH3[J]. Catalysts, 2019, 9(11):882-894. doi: 10.3390/catal9110882
    [76] XIN Y, ZHANG N N, WANG X, LI Q, MA X C, QI Y X, ZHENG L R, ANDEISON J A, ZHANG Z L. Efficient synthesis of the Cu-SAPO-44 zeolite with excellent activity for selective catalytic reduction of NO by NH3[J]. Catal. Today, 2019, 332:35-41. doi: 10.1016/j.cattod.2018.08.018
    [77] AHN N H, RYU T, KANG Y, KIM H, SHIN J, NAM I S, HONG S B. The origin of an unexpected increase in NH3-SCR activity of aged Cu-LTA catalysts[J]. ACS Catal, 2017, 7(10):6781-6785. doi: 10.1021/acscatal.7b02852
    [78] CAMBIOR M A, CORMA A, VALENCIA S. Characterization of nanocrystalline zeolite Beta[J]. Microporous Mesoporous Mater, 1998, 25:59-74. doi: 10.1016/S1387-1811(98)00172-3
    [79] HUANG S Y, WANG J, WANG J Q, WANG C, SHEN M Q, LI W. The influence of crystallite size on the structural stability of Cu/SAPO-34 catalysts[J]. Appl Catal B, 2019, 248:430-440. doi: 10.1016/j.apcatb.2019.02.054
    [80] DU J P, SHI X Y, SHAN Y L, WANG Y J, ZHANG W S, YU Y B, SHAN W P, HE H. The effect of crystallite size on low-temperature hydrothermal stability of Cu-SAPO-34[J]. Catal Sci Technol, 2020, 10:2855-2863. doi: 10.1039/D0CY00414F
    [81] PENG C, LIU Z D, AOKI H, CHOKKALINGAM A, HIROKI Y, KOJI O, SOHEI S, MARIKO A, HIROYUKI S, TAKAHIKO T, MUKTI R R, TATSUYA O, WAKIHARA T. Preparation of nanosized SSZ-13 zeolite with enhanced hydrothermal stability by a two-stage synthetic method[J]. Microporous Mesoporous Mater, 2018, 255:192-199. doi: 10.1016/j.micromeso.2017.07.042
    [82] FENG B J, ZHONG W, SUN Y Y, ZHANG C H, TANG S F, LI X B, XIANG H. Size controlled ZSM-5 on the structure and performance of Fe catalyst in the selective catalytic reduction of NOx with NH3[J]. Catal Commun, 2016, 80:20-23. doi: 10.1016/j.catcom.2016.02.020
    [83] FICKEL D W, DADDIO E, LAUTERBACH J A, LOBO R F. The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites[J]. Appl Catal B, 2011, 102(3/4):441-448. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0fb9994b0a77714b0529c2edbe512293
    [84] KIM Y J, LEE J K, MIN K M, HONG S B, NAM I S, ChO B K. Hydrothermal stability of Cu/SSZ-13 for reducing NOx by NH3[J]. J Catal, 2014, 311:447-457. doi: 10.1016/j.jcat.2013.12.012
    [85] CHENG J, HAN S, YE Q, CHENG S Y, KANG T F, DAI H X. Effects of hydrothermal aging at high and low temperatures on the selective catalytic reduction of NOx with NH3 over Cu/SAPO-34[J]. Res Chem Intermed, 2019, 45(4):2023-2044. doi: 10.1007/s11164-018-03712-0
    [86] WANG J, FAN D Q, YU T, WANG J Q, HAO T, HU X Q, SHEN M Q, LI W. Improvement of low-temperature hydrothermal stability of Cu/SAPO-34 catalysts by Cu2+ species[J]. J Catal, 2015, 322:84-90. doi: 10.1016/j.jcat.2014.11.010
    [87] WANG Q Y, SHEN M Q, WANG J Q, WANG C, WANG J. Nature of cerium on improving low-temperature hydrothermal stability of SAPO-34[J]. J Rare Earths, 2020, In press. http://www.researchgate.net/publication/343122359_Nature_of_cerium_on_improving_low-temperature_hydrothermal_stability_of_SAPO-34
    [88] XIANG X, WU P F, CAO Y, CAO L, WANG Q Y, XU S T, TIAN P, LIU Z M. Investigation of low-temperature hydrothermal stability of Cu-SAPO-34 for selective catalytic reduction of NOx with NH3[J]. Chinese J Catal, 2017, 38(5):918-927. doi: 10.1016/S1872-2067(17)62836-5
    [89] MING S J, CHEN Z, FAN C, PANG L, GUO W, ALBERT K B, LIU P, LI T. The effect of copper loading and silicon content on catalytic activity and hydrothermal stability of Cu-SAPO-18 catalyst for NH3-SCR[J]. Appl Catal A, 2018, 559:47-56. doi: 10.1016/j.apcata.2018.04.008
    [90] SHAN Y L, DUA J P, YUA Y B, SHAN W P, SHAI X Y, HE H. Precise control of post-treatment significantly increases hydrothermal stability of in-situ synthesized Cu-zeolites for NH3-SCR reaction[J]. Appl Catal B, 2020, 266:118655-118667. doi: 10.1016/j.apcatb.2020.118655
    [91] ANDONOVA S, TAMM S, MONTREUIL C, LAMBERT C, OLSSON L. The effect of iron loading and hydrothermal aging on one-pot synthesized Fe/SAPO-34 for ammonia SCR[J]. Appl Catal B, 2016, 180:775-787. doi: 10.1016/j.apcatb.2015.07.007
    [92] JIANG H, GUAN B, PENG X S, ZHAN R, HE L, ZHEN H. Influence of synthesis method on catalytic properties and hydrothermal stability of Cu/SSZ-13 for NH3-SCR reaction[J]. Chem Eng J, 2020, 379:122358-122370. doi: 10.1016/j.cej.2019.122358
    [93] WU X X, PENG J X, YANG S M, XU W Y. Investigation on the stability of copper modification of SAPO-34 catalysts in NH3-SCR reaction after hydrothermal aging[J]. Can J Chem, 2020, 98(5):236-243. doi: 10.1139/cjc-2019-0462
    [94] WANG Y, XIE L, LIU F, RUAN W. Effect of preparation methods on the performance of CuFe-SSZ-13 catalysts for selective catalytic reduction of NOx with NH3[J]. J Environ Sci (China), 2019, 81:195-204. doi: 10.1016/j.jes.2019.01.013
    [95] CHEN J L, PENG G, ZHENG W, ZHANG W B, GUO L, WU X Q. Excellent performance of one-pot synthesized Fe-containing MCM-22 zeolites for the selective catalytic reduction of NOx with NH3[J].Catal Sci Technol, 2020, In press. http://pubs.rsc.org/en/content/articlelanding/2020/cy/d0cy00989j
    [96] ZHAO H W, ZHAO Y N, MA Y H, XIN Y, MIAO W, CHEN H, ZHANG C J, LI Y D. Enhanced hydrothermal stability of a Cu-SSZ-13 catalyst for the selective reduction of NOx by NH3 synthesized with SAPO-34 micro-crystallite as seed[J]. J Catal, 2019, 377:218-223. doi: 10.1016/j.jcat.2019.07.023
    [97] BERGGRUND M, INGELSTEN H H, SKOGLUNDH M, PALMQVIST A E C. Influence of synthesis conditions for ZSM-5 on the hydrothermal stability of Cu-ZSM-5[J]. Catal Letters, 2009, 130(1/2):79-85. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f720ba8a2dcb2b292a9064c65879efcc
    [98] WANG M X, PENG Z L, ZHANG C M, LIU M M, HAN L, HOUY Q, HUANG Z G, WANG J C, BAO W R, CHANG L P. Effect of copper precursors on the activity and hydrothermal stability of Cu-SSZ-13 NH3-SCR catalysts[J]. Catalysts, 2019, 9:781-795. doi: 10.3390/catal9090781
    [99] WOO J, BERNIN D, AHARI H, SHOST M, ZAMMIT M, OLSSON L. Understanding the mechanism of low temperature deactivation of Cu/SAPO-34 exposed to various amounts of water vapor in the NH3-SCR reaction[J].Catal Sci Technol, 2019, 9(14):3623-3636. doi: 10.1039/C9CY00240E
    [100] LIN C L, CAO Y, FENG X, LIN Q J, XU H D, CHEN Y Q. Effect of Si islands on low-temperature hydrothermal stability of Cu/SAPO-34 catalyst for NH3-SCR[J]. J Taiwan Inst E, 2017, 81:288-294. doi: 10.1016/j.jtice.2017.09.050
    [101] LI P, ZHANG W P, HAN X W, BAO X H. Conversion of methanol to hydrocarbons over phosphorus-modified ZSM-5/ZSM-11 intergrowth zeolites[J]. Catal Letters, 2009, 134(1/2):124-130. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=35cbb1af7dec65ce3b8be8a02a9d0974
    [102] ZENG P H, LIANG Y, JI S F, SHEN B J, LIU H H, WANG B J, ZHAO H J, LI M F. Preparation of phosphorus-modified PITQ-13 catalysts and their performance in 1-butene catalytic cracking[J]. J Energ Chem, 2014, 23(2):193-200. http://www.zhangqiaokeyan.com/academic-journal-cn_journal-energy-chemistry_thesis/0201258478421.html
    [103] CORMA A, MENGUAL J, MIGUEL P J. IM-5 zeolite for steam catalytic cracking of naphtha to produce propene and ethene. An alternative to ZSM-5 zeolite[J]. Appl Catal A, 2013, 460-461:106-115. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4ada62a2b1a38667820851a71186e8e2
    [104] ZHUANG J Q, MA D, YANG G, YAN Z M, LIU X M, LIU X C, HAN X W, BAO X H, PENG X, LIU Z M. Solid-state MAS NMR studies on the hydrothermal stability of the zeolite catalysts for residual oil selective catalytic cracking[J]. J Catal, 2004, 228:234-242. doi: 10.1016/j.jcat.2004.08.034
    [105] WANG X, DAI W L, WU G J, LI L D, GUAN N J, HUNGER M. Phosphorus modified HMCM-22:Characterization and catalytic application in methanol-to-hydrocarbons conversion[J]. Microporous Mesoporous Mater, 2012, 151:99-106. doi: 10.1016/j.micromeso.2011.11.008
    [106] BUCHHOLZ A, WANG W, XU M, ARNOLD A, HUNGER M. Thermal stability and dehydroxylation of Brønsted acid sites in silicoaluminophosphates H-SAPO-11, H-SAPO-18, H-SAPO-31, and H-SAPO-34 investigated by multi-nuclear solid-state NMR spectroscopy[J]. Microporous Mesoporous Mater, 2002, 56:267-278. doi: 10.1016/S1387-1811(02)00491-2
    [107] KALIUCHI Y, TANIGAWA T, TSUNOJI N, TAKAMITSU Y, Sadakane M, SANO T. Phosphorus modified small-pore zeolites and their catalytic performances in ethanol conversion and NH3-SCR reactions[J]. Appl Catal A, 2019, 575:204-213. doi: 10.1016/j.apcata.2019.02.026
    [108] MA Y H, ZHAO H W, ZHANG C J, ZHAO Y N, CHEN H, LI Y D. Enhanced hydrothermal stability of Cu-SSZ-13 by compositing with Cu-SAPO-34 in selective catalytic reduction of nitrogen oxides with ammonia[J]. Catal Today, 2019, In press. http://www.researchgate.net/publication/332101401_Enhanced_hydrothermal_stability_of_Cu-SSZ-13_by_compositing_with_Cu-SAPO-34_in_selective_catalytic_reduction_of_nitrogen_oxides_with_ammonia
    [109] FAN J, NING P, WANG Y C, SONG Z X, LIU X, WANG H M, WANG J, WANG L Y, ZHANG Q L. Significant promoting effect of Ce or La on the hydrothermal stability of Cu-SAPO-34 catalyst for NH3-SCR reaction[J]. Chem Eng J, 2019, 369:908-919. doi: 10.1016/j.cej.2019.03.049
    [110] GAO Q, YE Q, HAN S A, CHENG S Y, KANG T F, DAI H X. Effect of Ce doping on hydrothermal stability of Cu-SAPO-18 in the selective catalytic reduction of NO with NH3[J]. Catal Surv from Asia, 2020, 24(2):134-142. doi: 10.1007/s10563-020-09294-5
    [111] TOYOHIRO U, LIU Z D, SAYOKO I, ZHU J, CHOKKALINGAM A, HIROKAZU I, NAOKI O, YUKICHI S, SHIRAMATA Y, KUSAMOTO T, WAKIHARA T. Improve the hydrothermal stability of Cu-SSZ-13 zeolite catalyst by loading a small amount of Ce[J]. ACS Catal, 2018, 8(10):9165-9173. doi: 10.1021/acscatal.8b01949
    [112] XIANG X, CAO Y, SUN L J, WU P F, CAO L, XU S T, TIANn P, LIU Z M. Improving the low-temperature hydrothermal stability of Cu-SAPO-34 by the addition of Ag for ammonia selective catalytic reduction of NOx[J]. Appl Catal A, 2018, 551:79-87. doi: 10.1016/j.apcata.2017.12.001
    [113] RAMIREZ-GARZA R E, RODRIGUEZ-IZNAGA I, SIMAKOV A, FARIAS M H, CASTILLON-BARRAZA F F. Cu-Ag/mordenite catalysts for NO reduction:Effect of silver on catalytic activity and hydrothermal stability[J]. Mater Res BullMater Res Bull, 2018, 97:369-378. doi: 10.1016/j.materresbull.2017.09.001
    [114] SONG C M, ZHANG L H, LI Z G, LU Y R, LI K X. Co-exchange of Mn:A simple method to improve both the hydrothermal stability and activity of Cu/SSZ-13 NH3-SCR catalysts[J]. Catalysts, 2019, 9:455-468. doi: 10.3390/catal9050455
    [115] ZHAO Y Y, BYUNGCHUL C, KIM D. Effects of Ce and Nb additives on the de-NOx performance of SCR/CDPF system based on Cu-beta zeolite for diesel vehicles[J]. Chem Sci, 2017, 164:258-269. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d28ed78191b28f6931a53693268c8e4d
    [116] FENG X, LIN Q J, CAO Y, ZHANG H L, LI Y S, XU H D, LIN C L, CHEN Y Q. Neodymium promotion on the low-temperature hydrothermal stability of a Cu/SAPO-34 NH3-SCR monolith catalyst[J]. J Taiwan Inst E, 2017, 80:805-812. doi: 10.1016/j.jtice.2017.09.036
    [117] LIN Q J, LIU J Y, LIU S, XU S H, LIN C L, FENG X, WANG Y, XU H D, CHEN Y Q. Barium-promoted hydrothermal stability of monolithic Cu/BEA catalyst for NH3-SCR[J]. Dalton Trans, 2018, 47(42):15038-15048. doi: 10.1039/C8DT03156H
    [118] WANG C, WANG C, WANG J, WANG J Q, SHEN M Q, LI W. Effects of Na+ on Cu/SAPO-34 for ammonia selective catalytic reduction[J]. J Environ Sci (China), 2018, 70:20-28. doi: 10.1016/j.jes.2017.11.002
    [119] XIE L J, LIU F D, SHI X Y, XIAO F S, HE H. Effects of post-treatment method and Na co-cation on the hydrothermal stability of Cu/SSZ-13 catalyst for the selective catalytic reduction of NOx with NH3[J]. Appl Catal B, 2015, 179:206-212. doi: 10.1016/j.apcatb.2015.05.032
    [120] MA J, SI Z C, WENG D, WU X D, YUE M. Potassium poisoning on Cu-SAPO-34 catalyst for selective catalytic reduction of NOx with ammonia[J]. Chem Eng J, 2015, 267:191-200. doi: 10.1016/j.cej.2014.11.020
    [121] WANG C, YAN W J, WANG Z X, CHEN Z X, WANG J Q, WANG J, WANG J M, SHEN M Q, KANG X. The role of alkali metal ions on hydrothermal stability of Cu/SSZ-13 NH3-SCR catalysts[J]. Catal Today, 2019, In press. http://www.sciencedirect.com/science/article/pii/S0920586119303487
    [122] ZHAO Z C, YU R, ZHAO R R, SHI C, GIES H, XIAO F S, DE V D, YoOKOI T, BAO X H, KOLB U, FEYEN M, MCGUIRE R, MAURER S, MOINI A, MULER U, ZHANG W P. Cu-exchanged Al-rich SSZ-13 zeolite from organotemplate-free synthesis as NH3-SCR catalyst:Effects of Na+ ions on the activity and hydrothermal stability[J]. Appl Catal B, 2017, 217:421-428. doi: 10.1016/j.apcatb.2017.06.013
    [123] CUI Y R, WANG Y L, MEI D H, WALTER E, WASHTON N M, HOLLADAY J D, WANGY, SZANYA J, PEDEN C H F, GAO F. Revisiting effects of alkali metal and alkaline earth co-cation additives to Cu/SSZ-13 selective catalytic reduction catalysts[J]. J Catal, 2019, 378:363-375. doi: 10.1016/j.jcat.2019.08.028
    [124] ZHANG T, SHI J, LIU J, WANG D X, ZHAO Z, CHENG K, LI J M. Enhanced hydrothermal stability of Cu-ZSM-5 catalyst via surface modification in the selective catalytic reduction of NO with NH3[J]. Appl Surf Sci, 2016, 375:186-195. doi: 10.1016/j.apsusc.2016.03.049
    [125] MIYAKE K, INOUE R, MIURA T, NAKAI M, ALJABRIl H, HIROTA Y, USHIDA Y, TANAKA S, MIYAMOTO M, INGAAKI S, KUBOTA Y, KONG C Y, NISHIYAMA N. Improving hydrothermal stability of acid sites in MFI type aluminosilicate zeolite (ZSM-5) by coating MFI type all silica zeolite (silicalite-1) shell layer[J]. Microporous Mesoporous Mater, 2019, 288:109523-109536. doi: 10.1016/j.micromeso.2019.05.048
    [126] CHEN L, WANG X X, CONG Q L, MA H Y, LI S J, LI W. Design of a hierarchical Fe-ZSM-5@CeO2 catalyst and the enhanced performances for the selective catalytic reduction of NO with NH3[J]. Chem Eng J, 2019, 369:957-967. doi: 10.1016/j.cej.2019.03.055
    [127] ZHANG T, QIU F, LI J H. Design and synthesis of core-shell structured meso-Cu-SSZ-13@mesoporous aluminosilicate catalyst for SCR of NO with NH3:Enhancement of activity, hydrothermal stability and propene poisoning resistance[J]. Appl Catal B, 2016, 195:48-58. doi: 10.1016/j.apcatb.2016.04.058
  • 加载中
图(5)
计量
  • 文章访问数:  1329
  • HTML全文浏览量:  79
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-04
  • 修回日期:  2020-09-06
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-10-10

目录

    /

    返回文章
    返回