留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MOR负载的自还原型双功能催化剂用于催化纤维素氢解制乙二醇的研究

肖竹钱 沙如意 计建炳 毛建卫

肖竹钱, 沙如意, 计建炳, 毛建卫. MOR负载的自还原型双功能催化剂用于催化纤维素氢解制乙二醇的研究[J]. 燃料化学学报(中英文), 2016, 44(10): 1225-1232.
引用本文: 肖竹钱, 沙如意, 计建炳, 毛建卫. MOR负载的自还原型双功能催化剂用于催化纤维素氢解制乙二醇的研究[J]. 燃料化学学报(中英文), 2016, 44(10): 1225-1232.
XIAO Zhu-qian, SHA Ru-yi, JI Jian-bing, MAO Jian-wei. Mordenite supported Ni-W self-reducing bifunctional catalyst for cellulose hydrogenolysis into ethylene glycol[J]. Journal of Fuel Chemistry and Technology, 2016, 44(10): 1225-1232.
Citation: XIAO Zhu-qian, SHA Ru-yi, JI Jian-bing, MAO Jian-wei. Mordenite supported Ni-W self-reducing bifunctional catalyst for cellulose hydrogenolysis into ethylene glycol[J]. Journal of Fuel Chemistry and Technology, 2016, 44(10): 1225-1232.

MOR负载的自还原型双功能催化剂用于催化纤维素氢解制乙二醇的研究

基金项目: 

浙江省教育厅科研项目 Y20112088

浙江省科技计划项目 2011R09028-10

详细信息
  • 中图分类号: TQ352

Mordenite supported Ni-W self-reducing bifunctional catalyst for cellulose hydrogenolysis into ethylene glycol

More Information
  • 摘要: 以丝光沸石分子筛(MOR)为载体,以高温生物碳源分解产物H2或CO为还原剂,采用等体积浸渍法制备自还原型双功能催化剂Ni-W/MOR,不经过还原过程直接将其应用于纤维素水相氢解制备低碳乙二醇的研究。考察了催化剂的煅烧温度、活性金属含量配比对纤维素转化率和目标产物收率的影响。结果表明,催化剂的煅烧温度在773 K为宜;XRD表征结果说明,催化剂中活性金属结晶度和晶体的种类与催化剂的配比有关;TEM照片可直观地说明,采用上述方法制备的催化剂中活性金属在载体上具有较好的分散性,粒径均小于20 nm。当Ni、W含量分别为10%和15%,煅烧温度为773 K,反应条件为513 K、5.0 MPa、2 h时低碳多元醇总收率为56.92%,其中,乙二醇收率为52.30%。
  • 图  1  等体积浸渍法制备自还原型催化剂过程示意图

    Figure  1  Incipient-wetness impregnation method for preparing self-reducing catalysts

    图  2  MOR负载的不同催化剂的BET分析

    Figure  2  BET analysis of self-reducing catalysts

    图  3  自还原型催化剂的热分析

    Figure  3  Thermal analysis of self-reducing catalysts

    图  4  不同活性组分配比的自还原型催化剂的XRD谱图

    Figure  4  XRD patterns of self-reducing catalysts with different Ni/W weight ratios

    图  5  10%Ni-15%W/MOR透射电镜照片

    Figure  5  TEM images of 10%Ni-15%W/MOR self-reducing catalyst

    图  6  不同Ni/W质量比对反应性能的影响

    Figure  6  Effect of Ni/W mass ratios on yields of products

    表  1  Ni-W/MOR催化剂的比表面积和孔结构

    Table  1  BET results of Ni-W/MOR

    CatalystBET specific surface area A/(m2·g-1)Pore volume v/(cm3·g-1)Average pore diameter d/nm
    10%Ni-15%W/MOR-773 K61.4500.1083.823
    10%Ni-15%W/MOR-873 K50.3600.1033.821
    10%Ni-15%W/MOR-973 K41.4760.1103.821
    25%Ni-20%W/MOR-773 K27.0820.2374.125
    下载: 导出CSV

    表  2  煅烧温度对催化剂Ni-W/MOR活性的影响

    Table  2  Effect of calcination temperature on catalytic activity of Ni-W/MORa

    EntryCatalystYield w/%Conv. x/%
    EGb1, 2-PGGlyErySorGlu
    110%Ni-15%W/MOR-673 K17.914.150.37-1.034.9882
    210%Ni-15%W/MOR-773 K52.304.310.31-2.389.68100
    310%Ni-15%W/MOR-873 K48.894.620.330.763.027.89100
    410%Ni-15%W/MOR-973 K44.834.990.381.626.369.02100
    510%Ni-15%W/MOR-1073 K21.651.324.82-2.535.1495
    a: reaction condition: feedstock: cellulose 0.5 g, water 55 mL; catalyst: 0.2 g; temperature: 513 K; H2 pressure: 5.0 MPa; reaction time: 2 h; b: EG: ethylene glycol; 1, 2-PG: 1, 2-propylene glycol; Gly: glycerol; Ery: erythritol; Sor: sorbitol; Glu: glucose
    下载: 导出CSV

    表  3  Ni/W质量比对催化剂Ni-W/MOR活性的影响

    Table  3  Effect of Ni/W mass ratio on catalytic activity of Ni-W/MORa

    EntryCatalystNi/W (mass ratio)Yield w/%Conv. x/%
    EG1, 2-PGGlyErySorGlu
    15%Ni-5%W/MOR-773 K1:1 b10.714.060.56-1.444.490
    210%Ni-5%W/MOR-773 K2:120.383.950.32-1.894.9996
    315%Ni-5%W/MOR-773 K3:127.715.340.421.021.321.4193
    410%Ni-10%W/MOR-773 K2:226.637.080.900.552.954.3691
    510%Ni-15%W/MOR-773 K2:352.304.310.31-2.389.68100
    615%Ni-20%W/MOR-773 K3:427.152.963.381.602.963.9598
    725%Ni-20%W/MOR-773 K5:437.444.052.702.274.342.2594
    825%Ni-25%W/MOR-773 K5:530.963.772.973.702.674.05100
    9blank/MOR-773 K-0.23-0.12-2.164.9033
    1010%Ni-15%W/MOR-773 Kc2:3tracetrace--3.043.8062
    1110%Ni-15%W/MCd2:336.352.60-0.901.122.3785
    a: reaction condition: feedstock: cellulose 0.5 g, water 55 mL; catalyst: 0.2 g; temperature: 513 K; H2 pressure: 5.0 MPa; reaction time: 2 h; b: Ni/W mass ratio 1:1 represents the loading of Ni and W are 5% and 5% resperctively; c: with no sucrose; d: mesoporous carbon
    下载: 导出CSV
  • [1] ROSELINDE O, MICHIEL D, JAN A G, BEAU O B, RICK V, ELENA G, JOHAN A M, ANDREAS R, BERT F S.Conversion of sugar to ethylene glycol with nickel tungsten carbide in a fed-batch reactor:High productivity and reaction network elucidation[J].Green Chem, 2014, 16(2):695-707. doi: 10.1039/C3GC41431K
    [2] BEAK I G, YOU S J, PARK E D.Direct conversion of cellulose into polyols over Ni/W/SiO2-Al2O3[J].Bioresouce Technol, 2012, 114:684-690. doi: 10.1016/j.biortech.2012.03.059
    [3] FUKUOKA A, DHEPE P L.Catalytic conversion of cellulose into sugar alcohols[J].Angew Chem Int Ed, 2006, (31):5161-5163.
    [4] LUO C, WANG S, LIU H.Cellulose conversion into polyols catalyzed by reversibly formed acids and supported Ruthenium clusters in hot water[J].Angew Chem Int Ed, 2007, 46(40):7636-7639. doi: 10.1002/(ISSN)1521-3773
    [5] DENG W P, TAN X, FANG W, ZHANG Q, WANG Y.Converison of cellulose into sorbitol over carbon nanotube-supported Ruthenium catalyst[J].Catal Lett, 2009, 133:167-174. doi: 10.1007/s10562-009-0136-3
    [6] NIU Y F, WANG H, ZHU X L, SONG Z Q, XIE X N, LIU X, HAN J Y, GE Q F.Ru supported on zirconia-modified SBA-15 for selective converison of cellulose to hexitol[J].Microporous Mesoporous Mater, 2014, 198:215-222. doi: 10.1016/j.micromeso.2014.07.030
    [7] YOU S J, BEAK I G, KIM Y T, JEONG K E, CHAE H J, KIM T W, KIM C U, KIM T J, CHUNG Y M, OH S H, PARK E D.Direct converison of cellulose into polyols or H2 over Pt/Na (H)-ZSM-5[J].Korean J Chem Eng, 2011, 28(3):744-750. doi: 10.1007/s11814-011-0019-3
    [8] Sun J Y, LIU H C.Selective hydrogenolysis of biomass-derived xylitol to ethylene glycol and propylene glycol on Ni/C and basic oxide-promoted Ni/C catalysts[J].Catal Today, 2014, 234:75-82. doi: 10.1016/j.cattod.2013.12.040
    [9] KATERINA F, OLIVER M, MARTIN L, PETER C.Hydrogenolysis of cellulose to valuable chemicals over actived carbon supported mono-and bimetallic nickel/tungsten catalysts[J].Green Chem, 2014, 16:3580-3588. doi: 10.1039/C4GC00664J
    [10] WANG A Q, ZHANG T.One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts[J].Accounts Chem Res, 2013, 46(7):1377-1386. doi: 10.1021/ar3002156
    [11] ZHAO M, CHUECH T L, HARRIS A T.SBA-15 supported Ni-Co bimetallic catalysts for enhanced hydrogen production during cellulose decomposition[J].Appl Catal B:Environ, 2011, 101(3/4):522-530.
    [12] JI N, ZHENG M Y, WANG A Q, ZHANG T, CHEN J G.Nickel-promoted tungsten carbide catalysts for cellulose conversion:effect of preparation methods[J].ChemSusChem, 2012, 5(5):939-944. doi: 10.1002/cssc.201100575
    [13] ZHENG M Y, WANG A Q, JI N, PANG J F, WANG X D, ZHANG T.Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol[J].ChemSusChem, 2010, 3:63-66. doi: 10.1002/cssc.v3:1
    [14] 赵冠鸿, 郑明远, 王爱琴, 张涛.磷化钨催化转化纤维素制乙二醇[J].催化学报, 2010, 31(8):928-932. doi: 10.1016/S1872-2067(10)60104-0

    ZHAO Guan-hong, ZHENG Min-yuan, WANG Ai-qin, ZHANG Tao.Catalytic conversion of cellulose to ethylene glycol over tungsten phosphide catalysts[J].Chin J Catal, 2010, 31(8):928-932. doi: 10.1016/S1872-2067(10)60104-0
    [15] KITCHIN J R, NORSKOV J K, BARTEAU M A, CHEN J G.Modification of the surface electronic and chemical properties of Pt (111) by subsurface 3d transition metals[J].J Chem Phys, 2004, 120(21):10240-10246. doi: 10.1063/1.1737365
    [16] CHEN J G, MENNING C A, ZELLNER M B.Monolayer bimetallic surfaces:Experimental and theoretical studies of trends in electronic and chemical properties[J].Surf Sci Pep, 2008, 63(5):201-254.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  113
  • HTML全文浏览量:  35
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-06
  • 修回日期:  2016-07-10
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-10-10

目录

    /

    返回文章
    返回