留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

桦甸油页岩热解过程中热沥青的组成变化规律

畅志兵 初茉 张超 白书霞 林浩

畅志兵, 初茉, 张超, 白书霞, 林浩. 桦甸油页岩热解过程中热沥青的组成变化规律[J]. 燃料化学学报(中英文), 2016, 44(11): 1310-1317.
引用本文: 畅志兵, 初茉, 张超, 白书霞, 林浩. 桦甸油页岩热解过程中热沥青的组成变化规律[J]. 燃料化学学报(中英文), 2016, 44(11): 1310-1317.
CHANG Zhi-bing, CHU Mo, ZHANG Chao, BAI Shu-xia, LIN Hao. Variation of chemical composition of thermal bitumen during Huadian oil shale pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2016, 44(11): 1310-1317.
Citation: CHANG Zhi-bing, CHU Mo, ZHANG Chao, BAI Shu-xia, LIN Hao. Variation of chemical composition of thermal bitumen during Huadian oil shale pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2016, 44(11): 1310-1317.

桦甸油页岩热解过程中热沥青的组成变化规律

基金项目: 国家重点基础研究发展规划(973计划,2014CB744301)资助
详细信息
    通讯作者:

    初茉, Tel:010-62331863, E-mail:cm@cumtb.edu.cn

  • 中图分类号: TQ534

Variation of chemical composition of thermal bitumen during Huadian oil shale pyrolysis

Funds: The project was supported by the Major State Basic Research Development Program of China (973 program, 2014CB744301)
  • 摘要: 将桦甸油页岩分别在300、350、400、450、500和550℃热解得到半焦,对半焦进行逐级抽提和酸洗,得到自由沥青、碳酸盐束缚沥青和硅酸盐束缚沥青,采用柱层析、FT-IR和GC-MS表征不同沥青的化学组成和结构特征,探讨沥青的化学组成变化及与矿物质的相互作用。结果表明,沥青总产率先增大后减小并在400℃取得最大值4.63%,400-450℃大量沥青分解生成页岩油,使沥青产率降至0.98%。350-450℃自由沥青主要发生羧酸脱羧、酯基分解和长链烷烃裂解反应,使羧酸和酯类化合物含量降低、烷烃碳链长度缩短。干酪根分解生成的羧酸与碳酸盐反应生成羧酸盐,使400℃碳酸盐束缚沥青中羧酸含量达78.82%;含氧化合物可与黏土矿物结合,且烷烃可进入蒙脱石层间,使400℃硅酸盐束缚沥青中含氧化合物和烷烃各占80.79%和19.21%。
  • 图  1  干酪根热分解示意图

    Figure  1  Thermal pyrolysis process of kerogen

    图  2  桦甸油页岩原样和黏土矿物的XRD谱图

    Figure  2  XRD patterns of Huadian raw oil shale and its clay mineral concentrate

    a: raw oil shale; b: clay mineral concentrate

    图  3  热沥青抽提步骤示意图

    Figure  3  Schematic diagram of bitumen extraction procedure

    图  4  沥青和页岩油产率随温度的变化

    Figure  4  Bitumen and shale oil yields at different temperatures

    图  5  以铝甑含油率为基准的沥青和页岩油产率

    Figure  5  Total bitumen and shale oil yields on the basis of aluminum retort oil content

    图  6  自由沥青和束缚沥青1的红外光谱谱图(a) 及局部放大图(b)

    Figure  6  FT-IR spectra of FB and BB-1 samples

    图  7  束缚沥青1和束缚沥青2的红外光谱谱图(a) 及局部放大图(b)

    Figure  7  FT-IR spectra of BB-1 and BB-2 samples

    图  8  沥青样品的总离子流色谱图

    Figure  8  Total ion chromatograms of bitumen samples

    图  9  自由沥青样品中各类组分的相对含量(a) 和正构烷烃的碳数分布(b)

    Figure  9  Peak area percentage of major components (a) and carbon number distribution of n-alkanes (b) contained in free bitumen samples

    图  10  400 ℃时自由沥青和束缚沥青中各类组分的相对含量

    Figure  10  Peak area percentage of major components in bitumen samples derived at 400 ℃

    表  1  桦甸油页岩的基本性质

    Table  1  Basic properties of Huadian oil shale

    Proximate analysis wad/% Ultimate analysis wdaf/% Product yield wad/%
    M A V FC C H N S O* char oil water gases
    5.13 68.58 23.52 2.77 75.61 10.09 1.71 3.18 9.41 79.12 9.75 7.61 3.52
    *:by difference
    下载: 导出CSV

    表  2  不同类型沥青的族组成特征

    Table  2  SARA fractions of different bitumen samples

    Sample SARA fraction w/%
    saturates aromatics resin asphaltene
    350 ℃
    FB 22.53 19.44 48.15 9.88
    BB-1 25.86 7.33 28.45 38.36
    BB-2 7.49 3.45 12.28 76.78
    400 ℃
    FB 21.24 19.24 46.74 12.78
    BB-1 17.00 7.91 21.73 53.36
    BB-2 6.91 3.46 14.04 75.59
    450 ℃
    FB 7.03 13.63 46.33 33.01
    BB-1 19.24 9.36 23.45 47.95
    BB-2 6.41 8.60 24.38 60.61
    下载: 导出CSV

    表  3  不同沥青样品的主要成分

    Table  3  Main compounds identified in bitumen samples

    Peak no. 350 ℃ FB 400 ℃ FB 400 ℃ BB-1 400 ℃ BB-2 450 ℃ FB
    formula CAS no. formula CAS no. formula CAS no. formula CAS no. formula CAS no.
    1 C14H30 629-59-4 C7H8O 108-39-4 C7H8O 108-39-4 C13H28 629-50-5 C7H8O 108-39-4
    2 C16H34 544-76-3 C11H24 1120-21-4 C8H10O 526-75-0 C16H34 544-76-3 C11H24 1120-21-4
    3 C17H36 629-78-7 C12H26 112-40-3 C8H16O2 124-07-2 C16H34 6165-40-8 C13H28 629-50-5
    4 C18H38 593-45-3 C13H28 629-50-5 C9H18O2 112-05-0 C18H38 593-45-3 C14H30 629-59-4
    5 C14H28O2 544-63-8 C14H30 629-59-4 C10H20O2 334-48-5 C18H38 6418-44-6 C15H32 629-62-9
    6 C19H40 629-92-5 C15H32 629-62-9 C11H22O2 112-37-8 C14H28O2 544-63-8 C16H34 544-76-3
    7 C20H42 112-95-8 C16H34 544-76-3 C12H24O2 143-07-7 C16H22O4 17851-53-5 C16H34 6165-40-8
    8 C16H32O2 57-10-3 C16H34 6165-40-8 C13H26O2 638-53-9 C20H42 112-95-8 C17H36 629-78-7
    9 C32H54O4 2432-90-8 C17H36 629-78-7 C14H28O2 544-63-8 C16H32O2 57-10-3 C18H38 593-45-3
    10 C21H44 629-94-7 C18H38 593-45-3 C15H30O2 1002-84-2 C32H54O4 2432-90-8 C18H38 6418-44-6
    11 C22H46 629-97-0 C14H28O2 544-63-8 C16H22O4 17851-53-5 C21H44 629-94-7 C14H28O2 544-63-8
    12 C17H34O2 506-12-7 C19H40 629-92-5 C16H32O2 57-10-3 C24H50 646-31-1 C19H40 629-92-5
    13 C23H48 638-67-5 C20H42 112-95-8 C32H54O4 2432-90-8 C23H32O2 119-47-1 C20H42 112-95-8
    14 C18H36O2 57-11-4 C16H32O2 57-10-3 C17H34O2 506-12-7 C17H34O3 110-37-2 C20H42 1560-86-7
    15 C24H50 646-31-1 C32H54O4 2432-90-8 C18H36O2 57-11-4 C26H42O4 14103-61-8 C16H32O2 57-10-3
    16 C19H38O2 646-30-0 C21H44 629-94-7 C19H38O2 646-30-0 - - C32H54O4 2432-90-8
    17 C25H52 629-99-2 C22H46 629-97-0 C23H32O2 119-47-1 - - C21H44 629-94-7
    18 C23H32O2 119-47-1 C23H48 638-67-5 C26H42O4 14103-61-8 - - C21H44 1560-84-5
    19 C17H34O3 110-37-2 C24H50 646-31-1 - - - - C24H50 646-31-1
    20 C26H42O4 14103-61-8 C25H52 629-99-2 - - - - C23H32O2 119-47-1
    21 C26H54 630-01-3 C23H32O2 119-47-1 - - - - C17H34O3 110-37-2
    22 C27H56 593-49-7 C17H34O3 110-37-2 - - - - C26H42O4 14103-61-8
    23 C25H40O2 55130-16-0 C26H42O4 14103-61-8 - - - - C28H58 630-02-4
    24 C18H36O3 109-37-5 C26H54 630-01-3 - - - - - -
    25 C28H58 630-02-4 C27H56 593-49-7 - - - - - -
    26 - - C25H40O2 55130-16-0 - - - - - -
    27 - - C18H36O3 109-37-5 - - - - - -
    28 - - C28H58 630-02-4 - - - - - -
    下载: 导出CSV
  • [1] 刘招君, 董清水, 叶松青, 朱建伟, 郭巍, 李殿超, 柳蓉, 张海龙, 杜江峰.中国油页岩资源现状[J].吉林大学学报(地球科学版), 2006, 36(6):869-876. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200606000.htm

    LIU Zhao-jun, DONG Qing-shui, YE Song-qing, ZHU Jian-wei, GUO Wei, LI Dian-chao, LIU Rong, ZHANG Hai-long, DU Jiang-feng. The situation of oil shale resources in China[J]. J Jilin Univ (Earth Sci Ed), 2006, 36(6):869-876. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200606000.htm
    [2] OGUNSOLA O I, HARTSTEIN A M, OGUNSOLA O. Oil Shale:A Solution to the Liquid Fuel Dilemma[M]. Washington D C:American Chemical Society, 2010:117.
    [3] ZIEGEL E R, GORMAN J W. Kinetic modeling with multiresponse data[J]. Technometrics, 1980, 22(2):139-150. doi: 10.1080/00401706.1980.10486129
    [4] 李术元, 钱家麟, 秦匡宗, 朱亚杰.沥青作为中间产物的油页岩热解动力学的研究[J].燃料化学学报, 1987, 15(2):118-123. http://www.cnki.com.cn/Article/CJFDTOTAL-RLHX198702002.htm

    LI Shu-yuan, QIAN Jia-lin, QIN Kuang-zong, ZHU Ya-jie. Study on the kinetics of oil shale pyrolysis with bitumen as an intermediate product[J]. J Fuel Chem Technol, 1987, 15(2):118-123. http://www.cnki.com.cn/Article/CJFDTOTAL-RLHX198702002.htm
    [5] WEN C S, KOBYLINSKI T P. Low-temperature oil shale conversion[J]. Fuel, 1983, 62(11):1269-1273. doi: 10.1016/S0016-2361(83)80008-8
    [6] MIKNIS F P, TURNER T F, BERDAN G L, CONN P J. Formation of soluble products from thermal decomposition of Colorado and Kentucky oil shales[J]. Energy Fuels, 1987, 1(6):477-483. doi: 10.1021/ef00006a004
    [7] LI Q Y, HAN X X, LIU Q Q, JIANG X M. Thermal decomposition of Huadian oil shale. Part I. Critical organic intermediates[J]. Fuel, 2014, 121:109-116. doi: 10.1016/j.fuel.2013.12.046
    [8] TANNENBAUM E, HUIZINGA B, KAPLAN I R. Role of minerals in thermal alteration of organic matter-Ⅱ:A material balance[J]. AAPG Bull, 1986, 70(9):1156-1165. https://www.researchgate.net/publication/11804520_Role_of_minerals_in_thermal_alteration_of_organic_matter--II_a_material_balance
    [9] HUIZINGA B, TANNENBAUM E, KAPLAN I R. The role of minerals in thermal alteration of organic matter-Ⅲ. Generation of bitumen in laboratory experiments[J]. Org Geochem, 1987, 11(6):591-604. doi: 10.1016/0146-6380(87)90012-X
    [10] RAZVIGOROVA M, BUDINOVA T, TSYNTSARSKI B, PETROVA B, EKINCI E, ATAKUL H. The composition of acids in bitumen and in products from saponification of kerogen:Investigation of their role as connecting kerogen and mineral matrix[J]. Int J Coal Geol, 2008, 76(3):243-249. doi: 10.1016/j.coal.2008.07.011
    [11] HUTTON A, BHARATI S, ROBL T. Chemical and petrographic classification of kerogen/macerals[J]. Energy Fuels, 1994, (8):1478-1488. https://www.researchgate.net/profile/Sunil_Bharati/publication/231270479_Chemical_and_Petrographic_Classification_of_KerogenMacerals/links/561cb2dd08ae6d17308bb85c.pdf?inViewer=0&pdfJsDownload=0&origin=publication_detail
    [12] 畅志兵, 初茉, 张超, 王文涓, 曲洋.颗粒粒径对油页岩热解产油率的影响[J].燃料化学学报, 2015, 43(6):663-668. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18638.shtml

    CHANG Zhi-bing, CHU Mo, ZHANG Chao, WANG Wen-juan, QU Yang. Influence of particle size on oil yield from pyrolysis of oil shale[J]. J Fuel Chem Technol, 2015, 43(6):663-668. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18638.shtml
    [13] 柏静儒, 潘朔, 林卫生, 贾春霞, 王擎.盐酸酸洗对油页岩小分子溶出行为的影响[J].燃料化学学报, 2014, 42(12):1409-1415. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18532.shtml

    BAI Jing-ru, PAN Shuo, LIN Wei-sheng, JIA Chun-xia, WANG Qing. Influence of hydrochloric acid pickling on dissolution behaviors of small molecules in oil shale[J]. J Fuel Chem Technol, 2014, 42(12):1409-1415. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18532.shtml
    [14] 王擎, 黄宗越, 迟铭书, 石聚欣, 王智超, 隋义.油页岩干酪根化学结构特性分析[J].化工学报, 2015, 66(5):1861-1866. http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201505031.htm

    WANG Qing, HUANG Zong-yue, CHI Ming-shu, SHI Ju-xin, WANG Zhi-chao, SUI Yi. Chemical structure analysis of oil shale kerogen[J]. CIESC J, 2015, 66(5):1861-1866. http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201505031.htm
    [15] ALSTADT K N, KATTI D R, KATTI K S. An in situ FTIR step-scan photoacoustic investigation of kerogen and minerals in oil shale[J]. Spectrochim Acta A, 2012, 89:105-113. doi: 10.1016/j.saa.2011.10.078
    [16] 王擎, 崔达, 迟铭书, 张宏喜, 许祥成.利用GC-MS和NMR技术研究干馏终温对桦甸页岩油组成性质的影响[J].化工学报, 2015, 66(7):2670-2677. http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201507042.htm

    WANG Qing, CUI Da, CHI Ming-shu, ZHANG Hong-xi, XU Xiang-cheng. Influence of final retorting temperature on composition and property of Huadian shale oil[J]. CIESC J, 2015, 66(7):2670-2677. http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201507042.htm
    [17] PATTERSON J H. A review of the effects of minerals in processing of Australian oil shales[J]. Fuel, 1994, 73(3):321-327. doi: 10.1016/0016-2361(94)90082-5
    [18] BALLICE L. Effect of demineralization on yield and composition of the volatile products evolved from temperature-programmed pyrolysis of Beypazari (Turkey) oil shale[J]. Fuel Process Technol, 2005, 86(6):673-690. doi: 10.1016/j.fuproc.2004.07.003
    [19] 王擎, 孙斌, 刘洪鹏, 柏静儒, 肖冠华.油页岩热解过程矿物质行为分析[J].燃料化学学报, 2013, 41(2):163-168. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18118.shtml

    WANG Qing, LIU Bin, LIU Hong-peng, BAI Jing-ru, XIAO Guan-hua. Analysis of mineral behavior during pyrolysis of oil shale[J]. J Fuel Chem Technol, 2013, 41(2):163-168. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18118.shtml
    [20] 李术元, 林世静, 郭绍辉, 刘洛夫.矿物质对干酪根热解生烃过程的影响[J].石油大学学报(自然科学版), 2002, 26(1):69-71. http://www.cnki.com.cn/Article/CJFDTOTAL-SYDX200201019.htm

    LI Shu-yuan, LIN Shi-jing, GUO Shao-hui, LIU Luo-fu. Catalytic effects of minerals on hydrocarbon generation in kerogen degradation[J]. J China Univ Pet (Nat Sci Ed), 2002, 26(1):69-71. http://www.cnki.com.cn/Article/CJFDTOTAL-SYDX200201019.htm
    [21] 张枝焕, 高先志, 方朝亮.粘土矿物对干酪根热解产物的影响极其作用机理[J].石油大学学报(自然科学版), 1995, 19(5):11-17. http://www.cnki.com.cn/Article/CJFDTOTAL-SYDX505.002.htm

    ZHANG Zhi-huan, GAO Xian-zhi, FANG Chao-liang. Effect of clay minerals on kerogen pyrolysis and the reaction mechanism[J]. J China Univ Pet (Nat Sci Ed), 1995, 19(5):11-17. http://www.cnki.com.cn/Article/CJFDTOTAL-SYDX505.002.htm
    [22] SISKIN M, BRONS G, PAYACK JR J F. Disruption of kerogen-mineral interactions in oil shales[J]. Energy Fuels, 1987, 1(3):248-252. doi: 10.1021/ef00003a004
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  95
  • HTML全文浏览量:  24
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-15
  • 修回日期:  2016-07-07
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-11-10

目录

    /

    返回文章
    返回