留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物质气化燃气中固体颗粒物的恒温临氧热解机理研究

林娜 郎林 刘华财 阴秀丽 吴创之

林娜, 郎林, 刘华财, 阴秀丽, 吴创之. 生物质气化燃气中固体颗粒物的恒温临氧热解机理研究[J]. 燃料化学学报(中英文), 2018, 46(3): 290-297.
引用本文: 林娜, 郎林, 刘华财, 阴秀丽, 吴创之. 生物质气化燃气中固体颗粒物的恒温临氧热解机理研究[J]. 燃料化学学报(中英文), 2018, 46(3): 290-297.
LIN Na, LANG Lin, LIU Hua-cai, YIN Xiu-li, WU Chuang-zhi. Isothermal partial oxidative pyrolysis mechanisms of solid particles from biomass gasification[J]. Journal of Fuel Chemistry and Technology, 2018, 46(3): 290-297.
Citation: LIN Na, LANG Lin, LIU Hua-cai, YIN Xiu-li, WU Chuang-zhi. Isothermal partial oxidative pyrolysis mechanisms of solid particles from biomass gasification[J]. Journal of Fuel Chemistry and Technology, 2018, 46(3): 290-297.

生物质气化燃气中固体颗粒物的恒温临氧热解机理研究

基金项目: 

国家自然科学基金 51676192

国家自然科学基金 51661145022

广州市科技计划项目 201707010237

详细信息
  • 中图分类号: TK6

Isothermal partial oxidative pyrolysis mechanisms of solid particles from biomass gasification

Funds: 

the National Natural Science Foundation of China 51676192

the National Natural Science Foundation of China 51661145022

the Science and Technology Program of Guangzhou 201707010237

More Information
  • 摘要: 在固定床反应器中考察了不同气氛下PBG恒温热解特性的差异,结合XPS与13C NMR等技术手段分析了400 ℃恒温热解条件下PBG固相产物的化学结构变化。结果表明,PBG在400 ℃恒温热解时,生物质气化燃气(BAG)与N2气氛下更易生成焦油,其析出量分别为50.71与37.45 mg/g,而临氧燃气气氛(BAG+2% O2)下焦油析出量仅为11.96 mg/g,说明适量O2的存在可有效抑制焦油的生成。进一步进行化学结构分析表明,在燃气(BAG)恒温热解条件下,PBG主要发生以脱氢脱氧为主的芳香化缩聚反应,易形成焦油类的大分子多环芳烃;而在临氧燃气(BAG+2% O2)恒温热解条件下,PBG表面的有机基团易与O2发生表面氧化反应,生成表面含氧官能团,在一定程度上抑制了芳香环缩聚反应,进而有利于降低焦油类物质的产率。因此,在生物质气化燃气实际高温过滤过程中适当添加氧(如:2% O2),可有效降低PBG焦油收率,且不会形成大分子多环芳烃,有助于解决粗燃气过滤的过滤介质堵塞问题。
  • 图  1  恒温热解实验装置示意图

    Figure  1  Schematic diagram of the isothermal pyrolysis reactor

    图  2  不同反应气氛下PBG转化率和焦油生成量(a)、临氧气氛下气体组分浓度变化率(b)

    Figure  2  PBG conversion rate and the tar yield under different reaction atmospheres (a) and the change rate of gas concentration under BAG+2%O2 atmosphere (b)

    图  3  PBG及其在不同气氛下热解固体产物的C 1s谱图

    Figure  3  C 1s XPS spectra of PBG and its pyrolysis solid products derived from different reaction atmospheres

    (a): PBG; (b): BAG-solid product; (c): BAG+2%O2-solid product; (d): N2-solid product

    图  4  PBG及其在不同气氛下热解固相产物13C NMR谱图

    Figure  4  13C NMR curve fitting results for PBG and its pyrolysis solid products derived from different reaction atmospheres

    (a): PBG; (b): BAG-solid product; (c): BAG+2%O2-solid product; (d): N2-solid product

    图  5  PBG及其在不同气氛下热解固相产物13C NMR碳骨架分布

    Figure  5  Distribution of carbon skeletons determined by 13C NMR in PBG and its pyrolysis solid products derived from different reaction atmospheres

    图  6  PBG及其在不同气氛下热解固相产物芳香簇典型示意图

    Figure  6  Typical aromatic clusters derived from NMR in PBG and its solid products under different reaction atmospheres

    (a): PBG; (b): BAG-solid product; (c): BAG+2%O2-solid product; (d): N2-solid product

    表  1  PBG的工业分析及元素分析

    Table  1  Proximate and ultimate analyses of PBG

    Sample Proximate analysis wdb/% Ultimate analysis wdb/%
    M A V FC C H S Oa N
    PBG 2.51 19.58 16.84 61.07 56.88 3.64 0.93 18.28 0.69
    a:calculation by difference
    下载: 导出CSV

    表  2  PBG原样及不同气氛下热解固体产物表面碳官能团的相对含量

    Table  2  The relative amounts of carbon functionalities in PBG and its pyrolysis solid products derived from different reaction atmospheres

    Sample Relative amount w/% Rb
    C-C & C=C C-H C-O C=O COOH total OFGsa
    PBG 8 72 13 1 6 20 0.11
    BAG-solid product 39 46 10 1 4 15 0.85
    BAG+2%O2-solid product 10 66 12 5 7 24 0.15
    N2-solid product 10 74 8 4 4 16 0.14
    a:total OFGs=the sum of oxygen-containing functional groups; bR= the ratio of “C-C & C=C” to “C-H”
    下载: 导出CSV

    表  3  PBG及其在不同气氛下热解固相产物13C NMR碳官能团分布

    Table  3  Distribution of carbon functionalities determined by 13C NMR in PBG and its pyrolysis solid products derived from different reaction atmospheres

    Skeletons
    Moieties
    δ
    Carbonyls Aromatics Alkyls
    C=O
    (202)
    COOH
    (187, 178)
    Ar-O
    (167, 153)
    Ar-C
    (140, 126)
    Ar-H
    (113, 101)
    R-O
    (93, 76, 56)
    CH2
    (40, 31)
    CH3
    (20, 13)
    PBG 0.82 2.75 7.26 45.99 22.11 5.45 7.04 8.58
    BAG-solid product 0.00 0.00 6.28 73.50 15.06 0.00 0.00 5.16
    BAG+2%O2-solid product 0.00 1.58 8.49 59.27 21.83 6.57 0.00 2.26
    N2-solid product 0.00 0.98 6.63 52.87 26.50 9.44 1.11 2.47
    Ar-O: O attached to aromatics; Ar-C: C attached to aromatics; Ar-H: H attached to aromatics; R-O: O attached to aliphatics
    下载: 导出CSV

    表  4  PBG及其在不同气氛下热解固相产物芳香度、芳香环边缘位点的碳原子占比、每个芳香簇所含最小碳原子数

    Table  4  Aromaticity, fractions of aromatic edge carbons and minimum number of carbons per aromatic cluster in PBG and its pyrolysis solid products derived from different reaction atmospheres

    Sample Aromaticity XAr-H Xedge, min Xedge, maX nC, min
    PBG 75.36 0.29 0.39 0.72 >12 C
    BAG-solid product 94.85 0.16 0.23 0.28 >77 C
    BAG+2%O2-solid product 89.59 0.24 0.34 0.45 >29 C
    N2-solid product 86.00 0.31 0.39 0.55 >20 C
    下载: 导出CSV
  • [1] HEIDENREICH S. Hot gas filtration-A review[J]. Fuel, 2013, 104:83-94. doi: 10.1016/j.fuel.2012.07.059
    [2] WOOLCOCK P J, BROWN R C. A review of cleaning technologies for biomass-derived syngas[J]. Biomass Bioenerg, 2013, 52:54-84. doi: 10.1016/j.biombioe.2013.02.036
    [3] SHARMA S D, DOLAN M, ILYUSHECHKIN A Y, MCLENNAN K G, NGUYEN T, CHASE D. Recent developments in dry hot syngas cleaning processes[J]. Fuel, 2010, 89:817-826. doi: 10.1016/j.fuel.2009.05.026
    [4] ALVIN M A. Impact of char and ash fines on porous ceramic filter life[J]. Fuel Process Technol, 1998, 56:143-168. doi: 10.1016/S0378-3820(97)00088-X
    [5] SIMEONE E, SIEDLECKI M, NACKEN M, HEIDENREICH S, DE JONG W. High temperature gas filtration with ceramic candles and ashes characterisation during steam-oxygen blown gasification of biomass[J]. Fuel, 2013, 108:99-111. doi: 10.1016/j.fuel.2011.10.030
    [6] KAMIYA H, SEKIYA Y, HORIO M. Thermal stress fracture of rigid ceramic filter due to char combustion in collected dust layer on filter surface[J]. Powder Technol, 2011, 115(2):139-145. https://www.sciencedirect.com/science/article/pii/S0032591000003387
    [7] HEMMER G, HOFF D, KASPER G. Thermo-analysis of fly ash and other particulate materials for predicting stable filtration of hot gases[J]. Adv Powder Technol, 2003, 14(6):631-655. doi: 10.1163/15685520360731954
    [8] HURLEY J P, MUKHERJEE B. Assessment of filter dust characteristics that cause filter failure during hot-gas filtration[J]. Energ Fuel, 2006, 20(4):1629-1638. doi: 10.1021/ef050303k
    [9] 龚智, 苏德仁, 曾中华, 魏志国, 潘贤齐.堇青石陶瓷过滤器生物质燃气除尘实验研究[J].陶瓷学报, 2011, 32(3):347-352. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tcxb201103002

    GONG Zhi, SU De-ren, ZENG Zhong-hua, WEI Zhi-guo, PAN Xian-qi. Experimental study on cordierite ceramic filter for biomass fuel gas filtration[J]. J Ceram, 2011, 32(3):347-352. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tcxb201103002
    [10] 郎林, 谢建军, 杨文申, 阴秀丽, 吴创之.改性陶瓷管高温净化生物质粗燃气的研究[J].工程热物理学报, 2014, 35(8):1665-1668. http://www.cqvip.com/QK/90922X/201408/71678266504849524856485252.html

    LANG Lin, XIE Jian-jun, YANG Wen-shen, YIN Xiu-li, WU Chuang-zhi. Hot gas filtration performance of modified ceramic candles for biomass gasfication[J]. J Eng Thermophys, 2014, 35(8):1665-1668. http://www.cqvip.com/QK/90922X/201408/71678266504849524856485252.html
    [11] 阴秀丽, 吴晋沪, 定明月, 郎林, 谢建军, 王树荣. 千吨生物质气化合成液体燃料关键技术与示范[R]. 455860816-3011BAD22B06/01, 2011.

    YIN Xiu-li, WU Jin-hu, DING Ming-yue, LANG Lin, XIE Jian-jun, WANG Shu-rong. The key technology and demonstration unit for 1000-ton synthol liquid fuel by biomass gasification[R]. 455860816-3011BAD22B06/01, 2011.
    [12] 郎林, 阴秀丽, 吴创之, 潘贤齐. 一种生物质粗燃气高温除尘除焦一体化净化工艺[P]. 中国, 201310590071. 7, 2014-3-5.

    LANG Lin, YIN Xiu-li, WU Chuang-zhi, PAN Xian-qi. An integrated high-temperature dust/tar purification technologyfor the crude biomass fuel gas[P]. Chinese Patent, ZL201310590071. 7, Mar. 5th, 2014.
    [13] 吴创之, 应浩, 李宗立, 阴秀丽, 潘贤齐, 周意. 生物质气化发电与热电联供系统研究[R]. 455860816-2012BAA09B03/01, 2012.

    WU Chuang-zhi, YING Hao, LI Zong-li, YIN Xiu-li, PAN Xian-qi, ZHOU Yi. The integrated systems for biomass gasification, power generation and CHP[R]. 455860816-2012BAA09B03/01, 2012.
    [14] 江俊飞. 生物质燃气中固体颗粒物的临氧燃烧研究[D]. 北京: 中国科学院大学, 2016.

    JIANG Jun-fei. The partial oxidation of the particulate matters in product gas[D]. Beijing: Chinese Academy of Sciences, 2016.
    [15] 陈亮. 有氧气氛下生物质热解特性的实验研究[D]. 上海: 上海交通大学, 2011. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D633171

    CHEN Liang. Experimental study on biomass pyrolysis characteristics in the presence of oxygen[D]. Shanghai: Shanghai Jiao Tong University, 2011. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D633171
    [16] NISHIMIYA K, HATA T, IMAMURA Y, ISHIHARA S. Analysis of chemical structure of wood charcoal by X-ray photoelectron spectroscopy[J]. J Wood Sci, 1998, 44(1):56-61. doi: 10.1007/BF00521875
    [17] 张娜. 污泥热解过程中氮的迁移特性研究[D]. 沈阳: 沈阳航空航天大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10143-1013174096.htm

    Zhang Na. Study on the transformation characteristics of nitrogen during pyrolysis of sewage sludge[D]. Shenyang: Shenyang Aerospace University, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10143-1013174096.htm
    [18] SULIMAN W, HARSH A J B, ABU-LAIL N I, FORTUNA A, DALLMEYER I, GARCIA-PEREZ M. Modification of biochar surface by air oxidation:Role of pyrolysis temperature[J]. Biomass Bioenerg, 2016, 85:1-11. doi: 10.1016/j.biombioe.2015.11.030
    [19] CHENG C H, LEHMANN J, THIES J E, BURTON S D, ENGELHRAD M H. Oxidation of black carbon by biotic and abiotic processes[J].Org Geochem, 2006, 37(11):1477-1488. doi: 10.1016/j.orggeochem.2006.06.022
    [20] BOEHM H P. Surface oxides on carbon and their analysis:a critical assessment[J]. Carbon, 2002, 40(2):145-149. doi: 10.1016/S0008-6223(01)00165-8
    [21] 王永刚, 周剑林, 陈艳巨, 胡秀秀, 张书, 林雄超. 13C固体核磁共振分析煤中含氧官能团的研究[J].燃料化学学报, 2013, 41(12):1422-1426. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18307.shtml

    WANG Yong-gang, ZHOU Jian-lin, CHEN Yan-ju, HU Xiu-xiu, ZHANG Shu, LIN Xiong-chao. Contents of O-containing functional groups in coals by 13C NMR analysis[J]. J Fuel Chem Technol, 2013, 41(12):1422-1426. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18307.shtml
    [22] 宋昱, 朱炎铭, 李伍.东胜长焰煤热解含氧官能团结构演化的13C NMR和FT-IR分析[J].燃料化学学报, 2015, 43(5):519-529. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18619.shtml

    SONG Yu, ZHU Yan-ming, LI Wu.Structure evolution of oxygen functional groupsin Dongsheng long flame coal by 13C-NMR and FT-IR[J]. J Fuel Chem Technol, 2015, 43(5):519-529. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18619.shtml
    [23] BREWER C E, SCHMIDT-ROHR K, SATRIO J A, BROWN R C. Characterization of biochar from fast pyrolysis and gasification systems[J]. Environ Prog Sustain, 2009, 28(3):386-396. doi: 10.1002/ep.v28:3
    [24] SOLUM M S, PUGMIRE R J, GRANT D M. 13C solid-state NMR of Argonne premium coals[J]. Energ Fuel, 1989, 3(2):187-193. doi: 10.1021/ef00014a012
    [25] THOMAS S, LEDESMA E B, WORNAT M J. The effects of oxygen on the yields of the thermal decomposition products of catechol under pyrolysis and fule-rich oxidation conditions[J]. Fuel, 2007, 86(16):2581-2595. doi: 10.1016/j.fuel.2007.02.003
    [26] THOMAS S, WORNAT M J. The effects of oxygen on the yields of polycyclic aromatic hydrocarbons formed during the pyrolysis and fuel-rich oxidation of catechol[J]. Fuel, 2008, 87(6):768-781. doi: 10.1016/j.fuel.2007.07.016
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  69
  • HTML全文浏览量:  24
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-14
  • 修回日期:  2018-01-18
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-03-10

目录

    /

    返回文章
    返回