留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

乙酸选择性加氢制乙醇反应性能研究

田树勋 程继红 狄伟 陈强 龙俊英 罗熙 胡云剑 孟祥堃 孙守理 孙琦

田树勋, 程继红, 狄伟, 陈强, 龙俊英, 罗熙, 胡云剑, 孟祥堃, 孙守理, 孙琦. 乙酸选择性加氢制乙醇反应性能研究[J]. 燃料化学学报(中英文), 2016, 44(7): 862-869.
引用本文: 田树勋, 程继红, 狄伟, 陈强, 龙俊英, 罗熙, 胡云剑, 孟祥堃, 孙守理, 孙琦. 乙酸选择性加氢制乙醇反应性能研究[J]. 燃料化学学报(中英文), 2016, 44(7): 862-869.
TIAN Shu-xun, CHENG Ji-hong, DI Wei, CHEN Qiang, LONG Jun-ying, LUO Xi, HU Yun-jian, MENG Xiang-kun, SUN Shou-li, SUN Qi. Study on the selective hydrogenation of acetic acid to ethanol[J]. Journal of Fuel Chemistry and Technology, 2016, 44(7): 862-869.
Citation: TIAN Shu-xun, CHENG Ji-hong, DI Wei, CHEN Qiang, LONG Jun-ying, LUO Xi, HU Yun-jian, MENG Xiang-kun, SUN Shou-li, SUN Qi. Study on the selective hydrogenation of acetic acid to ethanol[J]. Journal of Fuel Chemistry and Technology, 2016, 44(7): 862-869.

乙酸选择性加氢制乙醇反应性能研究

基金项目: 

神华集团科技创新项目 2014-NICF-5

详细信息
    通讯作者:

    田树勋, Tel: 010-57339367, E-mail: tianshuxun@nicenergy.com

  • 中图分类号: TQ214

Study on the selective hydrogenation of acetic acid to ethanol

Funds: 

The project was supported by the Science and Technology Innovation Program of Shenhua Group 2014-NICF-5

More Information
  • 摘要: 在固定床反应器上考察了反应温度、反应压力、乙酸(HAC) 液体进料空速、H2/HAC (总气体空速GHSV或H2流量) 对乙酸选择性加氢制乙醇反应的影响, 研究了乙酸转化率、产物选择性、乙醇时空收率的变化规律, 验证了自主开发催化剂的稳定性。结果表明, 副产物的选择性受反应条件的影响, 选择合适的反应条件可以抑制乙酸乙酯和丙酮的生成。原料与催化剂床层接触时间小于5 s时, 可以避免发生乙酸加氢分解脱羰反应生成甲烷气相产物, 也避免了乙醇的进一步反应生成乙烷。在反应温度为280 ℃, 反应压力为2.5 MPa, 乙酸进料液时空速为0.72 h-1, H2/HAC (mol ratio) 为16的条件下, 乙酸乙酯选择性为6%。900 h长周期实验表明, 自主开发催化剂具有较好的工业应用前景。
  • 图  1  乙酸加氢制乙醇反应产物全组分色谱分析典型图谱

    Figure  1  Typical chromatography spectrumof all products in the FID detector

    图  2  乙酸选择性加氢制乙醇基本反应网络示意图[17, 18]

    Figure  2  Schematic diagram of the reactions involved in the conversion of acetic acid

    图  3  乙酸选择性加氢生成乙醇分子演变过程

    Figure  3  Evolution course schematic of selective hydrogenation of acetic acid to ethanol

    图  4  反应温度对乙酸转化率和乙醇选择性、副产物产物选择性以及乙醇收率的影响

    Figure  4  Effect of temperature on the conversion of HAC and the selectivity of ethanol (a), selectivities of byproducts (b), ethanol yield reaction conditions: LHSV=0.72 h-1, H2/HAC (mol ratio)=16:1, 2.5 MPa

    图  5  反应压力对乙酸转化率和乙醇选择性、副产物产物选择性以及乙醇收率的影响

    Figure  5  Effect of reaction pressure on the conversion of HAC and the selectivity of ethanol (a), selectivities of byproducts (b), ethanol yield (c) reaction conditions: LHSV=0.72 h-1, H2/HAC (mol ratio)=16:1, 280 ℃

    图  6  乙酸液体进料空速对乙酸转化率和乙醇选择性、副产物产物选择性以及乙醇收率的影响

    Figure  6  Effect of space time velocity of acetic acid on the conversion of HAC and theselectivity of ethanol (a), selectivities of byproducts (b), ethanol yield (c) reaction conditions: H2 flow rate=343 sccm, reaction temperature=280 ℃, reaction pressure=2.5 MPa

    图  7  H2/HAC物质的量比对乙酸转化率和乙醇选择性(a)、副产物产物选择性(b) 以及乙醇收率(c) 的影响

    Figure  7  Effect of H2/HAC mol ratio on the conversion of HAC and the selectivity of ethanol (a), selectivities of byproducts (b), ethanol yield (c) reaction conditions: 280 ℃, 2.5 MPa, LHSV of HAC=0.6 h-1

    图  8  自主催化剂的稳定性

    Figure  8  Life time test of the lab-made catalyst for the hydroconversion of acetic acid reaction conditions: H2/HAC (mol ratio)=16:1, 280 ℃, 2.5 MPa, LHSV=0.72 h-1

    表  1  H2流量转化数据表

    Table  1  Conversion data of H2 flow

    H2/HAC/(mol ratio) H2 flow (S.T.P) qv/(mL·min-1) HAC feed qv/(mL·min-1) GHSV (S.T.P)/h-1 Contact time of the gaseous feed with catalyst t/s
    4.7 100 0.05 1 434 32.2
    9.4 200 0.05 2 625 17.6
    14 300 0.05 3 814 12.1
    16.4 350 0.05 4 407 10.5
    21 450 0.05 5 597 8.3
    28 600 0.05 7 380 6.3
    37.4 800 0.05 9 759 4.7
    79 1 700 0.05 20 462 2.3
    下载: 导出CSV
  • [1] 陈庆龄, 杨为民, 滕加伟.中国石化煤化工技术最新进展[J].催化学报, 2013, 34(1): 217-224. http://www.cnki.com.cn/Article/CJFDTOTAL-CHUA201301026.htm

    CHEN Qing-ling, YANG Wei-min, TENG Jia-wei. Recent advances in coal to chemicals technology developed by SINOPEC[J].Chin J Catal, 2013, 34(1): 217-224. http://www.cnki.com.cn/Article/CJFDTOTAL-CHUA201301026.htm
    [2] 苏会波, 林海龙, 李凡, 靖苏铜, 王伟.乙醇汽油对减少机动车污染排放的机理研究与分析[J].环境工程学报, 2015, 9(2): 823-829. http://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201502052.htm

    SU Hui-bo, LIN Hai-long, LI Fan, JING Su-tong, WANG Wei. Mechanism study and analysis on emission reduction of pollutants with ethanol gasoline[J]. Chin J Environ Eng, 2015, 9(2): 823-829. http://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201502052.htm
    [3] PEPLOW M. Cellulosic ethanol fights for life[J]. Nature, 2014, 7491: 152-153. https://www.researchgate.net/publication/260758671_Cellulosic_ethanol_fights_for_life
    [4] 凌晨, 唐丽.醋酸直接加氢制乙醇工艺及经济性分析[J].天然气化工(C1化学与化工), 2013, 38(2): 60-62. http://www.cnki.com.cn/Article/CJFDTOTAL-JXHY201402002.htm

    LIN Chen, TANG Li. Process and economic analysis of direct hydrogenation of acetic acid to ethanol[J]. Nat Gas Chem Ind, 2013, 38(2): 60-62. http://www.cnki.com.cn/Article/CJFDTOTAL-JXHY201402002.htm
    [5] 李振宇, 黄格省, 杨延翔, 李顶杰.燃料乙醇生产技术路线分析及产业发展建议[J].现代化工, 2011, 31(8): 1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-XDHG201108000.htm

    LI Zhen-yu, HUANG Ge-sheng, YANG Yan-xiang, LI Ding-jie. Analysis and development proposal on fuel grade alcohol production technique process[J]. Mod Chem Ind, 2011, 31(8): 1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-XDHG201108000.htm
    [6] 张玉卓.中国清洁能源的战略研究及发展对策[J].中国科学院院刊, 2014, 29(4): 429-436. http://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201404004.htm

    ZHANG Yu-zhuo. Study on the strategy and development countermeasure of China clean energy[J].Bull Chin Acad Sci, 2014, 29(4): 429-436. http://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201404004.htm
    [7] 胡宗贵, 李经纬, 陈伟苗, 邵守言, 朱桂生, 丁云杰. Rh-Mn-Li/SiO2催化剂上CO加氢制C2含氧化合物:载体硅烷化程度的影响[J].燃料化学学报, 2015, 43(11): 1380-1386. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18733.shtml

    HU Zong-gui, LI Jing-wei, CHEN Wei-miao, SHAO Shou-yan, ZHU Gui-sheng, DING Yun-jie. Rh-Mn-Li/SiO2 catalyst for CO hydrogenation to C2 oxygenates: Effect of support silanization degree on its catalytic performance[J]. J Fuel Chem Technol, 2015, 43(11): 1380-1386. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18733.shtml
    [8] 张新平, 于小芳, 孙帆, 高振明, 张春雷.醋酸乙酯加氢合成乙醇二维拟均相反应器模型[J].复旦学报(自然科学版), 2015, 54(5): 623-629. http://www.cnki.com.cn/Article/CJFDTOTAL-FDXB201505013.htm

    ZHANG Xin-ping, YU Xiao-fang, SUN Fan, GAO Zhen-ming, ZHANG Chun-lei. A two-dimension pseudo-homogeneous dispersion model of ethyl acetate hydrogenation to ethanol[J]. J Fudan Univ (Nat Sci), 2015, 54(5): 623-629. http://www.cnki.com.cn/Article/CJFDTOTAL-FDXB201505013.htm
    [9] RACHMADY W, VANNICE M A. Acetic acid reduction by H2 on bimetallic Pt-Fe catalysts[J]. J Catal, 2002, 209(1): 87-98. doi: 10.1006/jcat.2002.3623
    [10] RACHMADY W, VANNICE M A. Acetic acid reduction to acetaldehyde over iron catalysts I.Kinetic behavior[J]. J Catal, 2002, 208(1): 158-169. doi: 10.1006/jcat.2002.3560
    [11] RACHMADY W, VANNICE M A. Acetic acid reduction to acetaldehyde over iron catalysts Ⅰ.Characterization by MÖssbaoer spectroscopy, DRIFTS, TPD, and TPR[J]. J Catal, 2002, 208(1): 170-179. doi: 10.1006/jcat.2002.3561
    [12] PESTMAN R, KOSTER R M, BOELLAARD E, KRAAN A M V D, PONEC V. Identification of the active sites in the selective hydrogenation of acetic acid to acetaldehyde on iron oxide catalyst[J]. J Catal, 1998, 174(2): 145-152. http://casc.lic.leidenuniv.nl/publications/2204
    [13] PESTMAN R, KOSTER R M, PIETERSE J A Z, PONEC V. Reactions of carboxylic acids on oxides 1.Selective hydrogenation of acetic acid to acetaldehyde[J].J Catal, 1997, 168(2): 255-264. doi: 10.1006/jcat.1997.1623
    [14] PESTMAN R, KOSTER R M, DUIJNE A V, PIETERSE J A Z, PONEE V. Reactions of carboxylic acids on oxides 2.Bimolecular reaction of aliphatic acids to ketones[J]. J Catal, 1997, 168(2): 265-272. doi: 10.1006/jcat.1997.1624
    [15] 徐烨, 曹肃锋, 宁春利, 李永刚, 徐华龙, 张春雷.醋酸加氢制乙醇反应中负载型Pt-Sn双金属催化剂的研究[J].复旦学报(自然科学版), 2014, 53(2): 236-241. http://www.cnki.com.cn/Article/CJFDTOTAL-FDXB201402013.htm

    XU Ye, CAO Su-feng, NING Chun-li, LI Yong-gang, XU Hua-long, ZHANG Chun-lei. The hydrogenation of acetic acid to ethanol over supported Pt-Sn bimetallic catalyst[J]. J Fudan Univ (Nat Sci), 2014, 53(2): 236-241. http://www.cnki.com.cn/Article/CJFDTOTAL-FDXB201402013.htm
    [16] 胡英韬, 窦梅, 南碎飞.载体对Pt-Sn催化乙酸加氢制乙醇性能的影响[J].高校化学工程学报, 2014, 28(6): 1281-1285. http://www.cnki.com.cn/Article/CJFDTOTAL-GXHX201406016.htm

    HU Ying-tao, DOU Mei, NAN Sui-fei. Effects of supporter on Pt-Sn Catalytic performance in selective hydrogenation of acetic acid to ethanol[J]. J Chem Eng Chin Univ, 2014, 28(6): 1281-1285. http://www.cnki.com.cn/Article/CJFDTOTAL-GXHX201406016.htm
    [17] ONYESTYÁK G, HARNOS S, KASZONYI A, ŠTOLCOVÁ M, KALLÓ D. Acetic acid hydroconversion to ethanol over novel InNi/Al2O3 catalysts[J]. Catal Commun, 2012, 27: 159-163. doi: 10.1016/j.catcom.2012.07.021
    [18] ONYESTYÁK G, HARNOS S, KLšBERT S, ŠTOLCOVÁ M, KASZONYI A, KALLÓ D. Selective reduction of acetic acid to ethanol over novel Cu2In/Al2O3 catalyst[J]. Appl Catal A: Gen, 2013, 464-465: 313-321. doi: 10.1016/j.apcata.2013.05.042
    [19] PESTMAN R, DUIJNE A V, PIETERSE J A Z, PONEC V. The formation of ketones and aldehydes from carboxylic acids, structure-activity relationship for two competitive reactions[J]. J Mol Catal A: Chem, 1995, 103(3): 175-180. doi: 10.1016/1381-1169(95)00138-7
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  79
  • HTML全文浏览量:  43
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-05
  • 修回日期:  2016-04-01
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-07-10

目录

    /

    返回文章
    返回