留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NiO@SiO2核壳催化剂在浆态床中低温甲烷化研究

王辉 张俊峰 白云星 王文峰 谭猗生 韩怡卓

王辉, 张俊峰, 白云星, 王文峰, 谭猗生, 韩怡卓. NiO@SiO2核壳催化剂在浆态床中低温甲烷化研究[J]. 燃料化学学报(中英文), 2016, 44(5): 548-556.
引用本文: 王辉, 张俊峰, 白云星, 王文峰, 谭猗生, 韩怡卓. NiO@SiO2核壳催化剂在浆态床中低温甲烷化研究[J]. 燃料化学学报(中英文), 2016, 44(5): 548-556.
WANG Hui, ZHANG Jun-feng, BAI Yun-xing, WANG Wen-feng, TAN Yi-sheng, HAN Yi-zhuo. NiO@SiO2 core-shell catalyst for low-temperature methanation of syngas in slurry reactor[J]. Journal of Fuel Chemistry and Technology, 2016, 44(5): 548-556.
Citation: WANG Hui, ZHANG Jun-feng, BAI Yun-xing, WANG Wen-feng, TAN Yi-sheng, HAN Yi-zhuo. NiO@SiO2 core-shell catalyst for low-temperature methanation of syngas in slurry reactor[J]. Journal of Fuel Chemistry and Technology, 2016, 44(5): 548-556.

NiO@SiO2核壳催化剂在浆态床中低温甲烷化研究

基金项目: 中国-荷兰壳牌公司合作项目资助
详细信息
    通讯作者:

    张俊峰, Tel: 0351-4044388, E-mail: zhangjf@sxicc.ac.cn

  • 中图分类号: O643

NiO@SiO2 core-shell catalyst for low-temperature methanation of syngas in slurry reactor

Funds: The project was supported by China-Shell Global Solution International BV cooperation project
  • 摘要: 采用改进的Stöber方法, 可控制备出具有不同形貌的NiO@SiO2核壳结构催化剂, 并在浆态床反应器(320 ℃) 上, 对其合成气低温甲烷化性能进行评价; 同时借助XRD、TEM、XPS和N2物理吸附等方法对反应前后催化剂的物化性质进行了表征。研究表明, 实验制备的催化剂形貌规整、粒径均匀, 且具有较好的热稳定性。在相同的制备条件下, 核颗粒粒径增大, 其SiO2壳层的厚度随之增加。在反应过程中, 部分催化剂的核壳结构遭到破坏并出现SiO2空壳, 是CO与壳层内的Ni作用生成易迁移的Ni羰基化物种(Ni (CO)x) 所致。催化剂的甲烷化活性随着核颗粒粒径的增加呈现下降趋势; 在不同的反应阶段, 催化剂的失活速率存在明显差异, 在反应的前20 h内, 催化剂出现快速失活, 20 h后失活缓慢, 但是催化剂的甲烷选择性都保持在80%左右。催化剂的失活, 一方面, 是因为反应过程中, Ni核颗粒发生了长大; 另一方面, 是由于壳层中3-5 nm的介孔的减少以及催化剂比表面积、孔容的下降。
  • 图  1  不同催化剂的反应性能

    Figure  1  CO conversions and CH4 selectivities as a function of time on stream over the different catalysts

    ■: NiO-350@SiO2; ●: NiO-400@SiO2; ▲: NiO-500@SiO2; ▼: NiO-500/SiO2

    图  2  不同温度焙烧处理得到的NiO纳米颗粒的XRD谱图

    Figure  2  XRD patterns of NiO nano-particles calcined at different temperatures

    图  3  包覆前后不同NiO纳米颗粒的TEM照片及核壳尺寸分布

    Figure  3  TEM images and size distributions of NiO nano-particles before and after encapsulation

    (a): NiO-350; (b): NiO-400; (c): NiO-500; (d): NiO-350@SiO2; (e): NiO-400@SiO2; (f): NiO-500@SiO2

    图  4  反应后NiO@SiO2的TEM照片及核壳尺寸分布

    Figure  4  TEM images, core size distribution and shell thickness of Ni@SiO2 after reaction

    (a): used NiO-350@SiO2; (b): used NiO-400@SiO2; (c): used NiO-500@SiO2

    图  5  反应前后NiO@SiO2的XPS谱图

    Figure  5  XPS spectra of NiO@SiO2 before and after reaction

    图  6  反应前(a) 和反应后(b) NiO@SiO2颗粒的N2吸脱附曲线,反应前(c) 和反应后(d) NiO@SiO2颗粒的BJH孔分布

    Figure  6  N2 adsorption-desorption isotherms of NiO@SiO2 particles before (a) and after (b) reaction, BJH pore size distribution of NiO@SiO2 particles before (c) and after (d) reaction

    表  1  NiO颗粒粒径及反应前后NiO@SiO2的核壳尺寸

    Table  1  Particle size of NiO, core size and shell thickness of NiO@SiO2

    Sample Core d/nm Shell d/nm
    NiO-350 4.9 -
    NiO-350@SiO2 5.1 6.1
    Used NiO-350@SiO2 8.1 5.0
    NiO-400 8.1 -
    NiO-400@SiO2 8.6 11.2
    Used NiO-400@SiO2 10.6 10.1
    NiO-500 23.7 -
    NiO-500@SiO2 23.3 23.0
    Used NiO-500@SiO2 27.8 20.6
    下载: 导出CSV

    表  2  反应前后催化剂的表面原子浓度及体相Ni含量

    Table  2  Surface atom concentration and Ni content of catalyst before and after reaction

    Sample Surface atomic concentrationsa/% Ni/Si
    (atomic ratio)
    Nib/%
    Ni Si O
    NiO-350@SiO2 10.11 17.77 72.12 0.57 57.32
    Used NiO-350@SiO2 9.85 17.12 73.03 0.58 55.92
    NiO-400@SiO2 8.50 24.36 67.14 0.35 58.98
    Used NiO-400@SiO2 5.09 27.73 67.18 0.18 61.21
    NiO-500@SiO2 6.46 21.22 72.32 0.30 60.68
    Used NiO-500@SiO2 4.61 28.38 67.01 0.16 63.14
    Theoretical valuec 33.50 11.00 55.50 3.05 62.16
    a: the surface atomic concentrations of catalysts were calculated by XPS; b: Ni bulk concentration of catalysts obtained from ICP c: based on the addition mass when catalyst is prepared
    下载: 导出CSV

    表  3  反应前后催化剂的N2吸附

    Table  3  N2 sorption of NiO@SiO2 before and after reaction

    Sample BET surface area A/(m2·g-1) Pore volume v/(cm3·g-1) Pore diameter d/nm
    NiO-350@SiO2 117.2 0.218 7.4
    Used NiO-350@SiO2 52.7 0.147 11.2
    NiO-400@SiO2 82.9 0.197 8.2
    Used NiO-400@SiO2 43.5 0.101 9.3
    NiO-500@SiO2 34.4 0.074 8.6
    Used NiO-500@SiO2 23.7 0.073 12.3
    下载: 导出CSV
  • [1] 张俊峰, 白云星, 张清德, 解红娟, 谭猗生, 韩怡卓. Zr改性Ni/γ-Al2O3催化剂用于浆态相合成气的低温甲烷化[J].燃料化学学报, 2013, 41(8): 966-971. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18237.shtml

    ZHANG Jun-feng, BAI Yun-xing, ZHANG Qing-de, XIE Hong-juan, TAN Yi-sheng, HAN Yi-zhuo. Low temperature methanation of syngas in a slurry reactor over Zr-doped Ni/γ-Al2O3 catalyst[J]. J Fuel Chem Technol, 2013, 41(8): 966-971. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18237.shtml
    [2] 孟凡会, 常慧蓉, 李忠. Ni-Mn/Al2O3催化剂在浆态床中CO甲烷化催化性能[J].化工学报, 2014, 65(8): 2997-3003.

    MENG Fan-hui, CHANG Hui-rong, LI Zhong. Catalytic performance of Ni-Mn/Al2O3 catalyst for CO methanation in slurry-bed reactor[J]. CIESC J, 2014, 65(8): 2997-3003.
    [3] 孟凡会, 刘军, 李忠, 钟朋展, 郑华艳. Ce含量对Ni-Ce/Al2O3催化剂结构及浆态床CO甲烷化性能的影响[J].燃料化学学报, 2014, 42(2): 231-237. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18360.shtml

    MENG Fan-hui, LIU Jun, LI Zhong, ZHONG Peng-zhan, ZHENG Hua-yan. Effect of Ce content of Ni-Ce/Al2O3 catalyst constructure and CO methanation in slurry-bed reactor[J]. J Fuel Chem Technol, 2014, 42(2): 231-237. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18360.shtml
    [4] ZHANG J F, BAI Y X, ZHANG Q D, WANG X X, ZHANG T, TAN Y S, HAN Y Z. Low-temperature methanation of syngas in slurry phase over Zr-doped Ni/γ-Al2O3 catalysts prepared using different methods[J]. Fuel, 2014, 132: 211-218. doi: 10.1016/j.fuel.2014.04.085
    [5] 黄国宝, 王志青, 李庆峰, 黄戒介, 房倚天.液相中镍催化剂催化合成气甲烷化的初步研究[J].燃料化学学报, 2014, 42(8): 952-957. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18470.shtml

    HUANG Guo-bao, WANG Zhi-qing, LI Qing-feng, HUANG Jie-jie, FANG Yi-tian. Syngas methanation over nickel catalyst in liquid-phase[J]. J Fuel Chem Technol, 2014, 42(8): 952-957. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18470.shtml
    [6] 贺龙.浆态床镍基甲烷化催化剂的研究[D].北京:中国矿业大学(北京), 2012.

    HE Long. Research of nickel based catalyst for methanation of synthetic gas in slurry bed reactor[D]. Beijing: China University of Mining and Technology (Beijing), 2012.
    [7] 马胜利.煤基合成气低温甲烷化镍基催化剂的研究[D].太原:中国科学院山西煤炭化学研究所, 2011.

    MA Sheng-li. Study on low temperature methanation for coal-derived syngas over Ni-based catalyst[D]. Taiyuan: Institute of Coal Chemistry, Chinese Academy of Sciences, 2011.
    [8] GRAF C, VOSSEN D L J, IMHOF A, VAN BLAADEREN A. A general method to coat colloidal particles with silica[J]. Langmuir, 2003, 19(17): 6693-6700. doi: 10.1021/la0347859
    [9] YAO L H, LI Y X, ZHAO J, JI W J, AU C T. Core-shell structured nanoparticles (M@SiO2, Al2O3, MgO; M=Fe, Co, Ni, Ru) and their application in COx-free H2 production via NH3 decomposition[J]. Catal Today, 2010, 158(3/4): 401-408. http://www.sciencedirect.com/science/article/pii/S0920586110003251
    [10] LI Z W, MO L Y, KATHIRASER Y, KAWI S. Yolk-Satellite-Shell Structured Ni-Yolk@Ni@SiO2 Nanocomposite: Superb Catalyst toward Methane CO2 Reforming Reaction[J]. ACS Catal, 2015, 4(5): 1526-1536. doi: 10.1021/cs401027p
    [11] LI Z W, KATHIRASER Y, KAWI S. Facile synthesis of high surface area yolk-shell Ni@Ni embedded SiO2 via Ni phyllosilicate with enhanced performance for CO2 reforming of CH4[J]. ChemCatChem, 2014, 7: 160-168. doi: 10.1002/cctc.201402673/full
    [12] LI L, YAO Y, SUN B, FEI Z Y, XIA H, ZHAO J, JI W J, AU C T. Highly active and stable lanthanum-doped core-shell-structured Ni@SiO2 catalysts for the partial oxidation of methane to syngas[J]. ChemCatChem, 2013, 5(12): 3781-3787. doi: 10.1002/cctc.201300537
    [13] LI L, HE S C, SONG Y Y, ZHAO J, JI W J, AU C T. Fine-tunable Ni@porous silica core-shell nanocatalysts: Synthesis, characterization, and catalytic properties in partial oxidation of methane to syngas[J]. J Catal, 2012, 288: 54-64. doi: 10.1016/j.jcat.2012.01.004
    [14] 李雷.核壳结构纳米催化剂的设计与制备及甲烷选择性氧化制合成气研究[D].南京:南京大学, 2012.

    LI Lei. Core-shell structured nanocatalysts: design, synthesize and their application in partial oxidation of methane to syngas[D]. Nanjing: Nanjing University, 2012.
    [15] TAKENAKA S, UMEBAYASHI H, TANABE E, MATSUNE H, KISHIDA M. Specific performance of silica-coated Ni catalysts for the partial oxidation of methane to synthesis gas[J]. J Catal, 2007, 245(2): 392-400. doi: 10.1016/j.jcat.2006.11.005
    [16] ZHANG L F, LI M, REN T Z, LIU X Y, YUAN Z Y. Ce-modified Ni nanoparticles encapsulated in SiO2 for COx-free hydrogen production via ammonia decomposition[J]. Int J Hydrogen Energ, 2015, 40(6): 2648-2656. doi: 10.1016/j.ijhydene.2014.12.079
    [17] 张明伟.核壳结构铁基催化剂的制备及在CO加氢中的应用[D].太原:中国科学院大学山西煤炭化学研究所, 2014.

    ZHANG Ming-wei. Preparation of core-shell iron-based catalysts and their application for CO hydrogenation[D]. Taiyuan: Institute of Coal Chemistry, Chinese Academy of Sciences, 2011.
    [18] ZHANG M W, FANG K G, LIN M G, HOU B, ZHONG L S, ZHU Y, WEI W, SUN Y H. Controlled Fabrication of Iron Oxide/Mesoporous Silica Core-Shell Nanostructures[J]. J Phys Chem C, 2013, 117: 21529-21538. doi: 10.1021/jp4049583
    [19] XIE R Y, LI D B, HOU B, WANG J G, JIA L T, SUN Y H. Solvothermally derived Co3O4@m-SiO2 nanocomposites for Fischer-Tropschsynthesis[J]. Catal Commun, 2011, 12(5): 380-383. doi: 10.1016/j.catcom.2010.10.010
    [20] XIE R Y, WANG H, GAO P, XIA L, ZHANG Z Z, ZHAO T J, SUN Y H. Core@shell Co3O4@C-m-SiO2 catalysts with inert C modified mesoporous channel for desired middle distillate[J]. Appl Catal A: Gen, 2015, 492: 93-99. doi: 10.1016/j.apcata.2014.12.023
    [21] LI Y R, LU G X, MA J T. Highly active and stable nano NiO-MgO catalyst encapsulated by silica with a core-shell structurefor CO2 methanation[J]. RSC Adv, 2014, 4: 17420-17428. doi: 10.1039/c3ra46569a
    [22] MUNNIK P, VELTHOEN M E Z, DE JONGH P E, DE JONG K P, GOMMES C J. Nanoparticle growth in supported nickel catalysts during methanation reaction-larger is better[J]. Angew Chem, Int Ed, 2014, 53(36): 9493-9497. doi: 10.1002/anie.201404103
    [23] ENGBAEK J, LYTKEN O, NIELSEN J H, CHORKENDORFF L. CO dissociation on Ni: The effect of steps and of nickel carbonyl[J]. Surf Sci, 2008, 602(3): 733-743. doi: 10.1016/j.susc.2007.12.008
    [24] 曾波.核壳结构钴基催化剂及中间馏分油合成研究[D].太原:中国科学院大学山西煤炭化学研究所, 2014.

    ZENG Bo. Synthesis of middle distillates via cobalt-based catalysts with core-shell structures[D]. Taiyuan: Institute of Coal Chemistry, Chinese Academy of Sciences, 2014.
    [25] CHOU K, CHEN C. Fabrication and characterization of silver core and porous silica shell nanocomposite particles[J]. Microporous Mesoporous Mater, 2007, 98: 208-213. doi: 10.1016/j.micromeso.2006.09.006
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  84
  • HTML全文浏览量:  29
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-25
  • 修回日期:  2016-02-29
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-05-10

目录

    /

    返回文章
    返回