留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属前驱体对质子交换膜燃料电池用PtCu/C催化剂性能的影响

赵天天 张路 曾浩 林瑞

赵天天, 张路, 曾浩, 林瑞. 金属前驱体对质子交换膜燃料电池用PtCu/C催化剂性能的影响[J]. 燃料化学学报(中英文), 2016, 44(5): 613-620.
引用本文: 赵天天, 张路, 曾浩, 林瑞. 金属前驱体对质子交换膜燃料电池用PtCu/C催化剂性能的影响[J]. 燃料化学学报(中英文), 2016, 44(5): 613-620.
ZHAO Tian-tian, ZHANG Lu, ZENG Hao, LIN Rui. Influence of metal precursor on the performance of PtCu/C catalyst for proton exchange membrane fuel cell[J]. Journal of Fuel Chemistry and Technology, 2016, 44(5): 613-620.
Citation: ZHAO Tian-tian, ZHANG Lu, ZENG Hao, LIN Rui. Influence of metal precursor on the performance of PtCu/C catalyst for proton exchange membrane fuel cell[J]. Journal of Fuel Chemistry and Technology, 2016, 44(5): 613-620.

金属前驱体对质子交换膜燃料电池用PtCu/C催化剂性能的影响

基金项目: 

国家自然科学基金 2127199

详细信息
    通讯作者:

    林瑞, Tel: +86-21-69583837, E-mail: ruilin@tongji.edu.cn

  • 中图分类号: O643

Influence of metal precursor on the performance of PtCu/C catalyst for proton exchange membrane fuel cell

Funds: 

the National Natural Science Foundation of China 2127199

  • 摘要: 采用乙二醇还原法, 利用不同金属前驱体(CuSO4 / CuCl2、K2PtCl4 / H2PtCl6) 制备了铂铜总质量分数为20%的四种PtCu/C催化剂, 并通过透射电子显微镜(TEM)、X射线衍射(XRD)、循环伏安法(CV) 和线性扫描伏安法(LSV) 对催化剂进行物相结构表征及电化学性能测试。结果表明, 以CuSO4和K2PtCl4为前驱体组合制备出的PtCu/C催化剂性能最优。所制备的PtCu/C催化剂金属颗粒平均粒径为2.3 nm, 粒径范围窄, 在碳载体上负载均匀; 电化学活性面积(ECSA) 达到73.0 m2/gPt, 质量比活性(MA) 为126.65 mA/mgPt, 均优于商业Pt/C催化剂。
  • 图  1  不同前驱体制备的PtCu/C催化剂的TEM照片和颗粒粒径分布

    Figure  1  TEM images (a-e) and particle size distributions (a′-e′) of the PtCu (a-e)/C catalysts prepared with different metal precursors and Pt/C-JM

    (a, a′): PtCu/C (a); (b, b′): PtCu/C (b); (c, c′): PtCu/C (c); (d, d′): PtCu/C (d); (e, e′): Pt/C-JM

    图  2  不同前驱体制备的PtCu/C催化剂的XRD谱图

    Figure  2  XRD patterns of the PtCu/C catalysts prepared with different metal precursors

    a: PtCu/C (a); b: PtCu/C (b); c: PtCu/C (c); d: PtCu/C (d)

    图  3  不同前驱体制备的PtCu/C催化剂和Pt/C-JM催化剂的循环伏安曲线

    Figure  3  CV curves of the Pt/C-JM catalyst and the PtCu/C catalysts prepared with different metal precursors

    图  4  不同前驱体制备的PtCu/C催化剂和Pt/C-JM催化剂的线性扫描曲线

    Figure  4  LSV curves of the Pt/C-JM catalyst and the PtCu/C catalysts prepared with different metal precursors

    图  5  单电池极化曲线和功率密度曲线

    Figure  5  I-V curves and power density curves of the single cells with PtCu/C and Pt/C-JM catalysts

    图  6  单电池EIS的Nyquist图和拟合后的Nyquist图

    Figure  6  Nyquist plots of EIS for the single cells with PtCu/C and Pt/C-JM catalysts

    图  7  单电池阻抗等效电路图

    Figure  7  Equivalent circuit diagram of EIS for the single cells

    图  8  PtCu/C催化剂和Pt/C-JM催化剂的循环伏安曲线

    Figure  8  CV curves of PtCu/C and Pt/C-JM catalyst

    表  1  通过TEM计算的平均颗粒粒径与通过XRD计算的平均晶粒粒径

    Table  1  Mean particle sizes calculated from TEM and XRD results

    Sample Metal precursor Mean particle size d/nm
    TEM XRD
    (a) CuSO4+K2PtCl4 2.3 3.6
    (b) CuSO4+H2PtCl6 4.1 4.3
    (c) CuCl2+K2PtCl4 3.4 3.9
    (d) CuCl2+H2PtCl6 4.8 4.8
    下载: 导出CSV
  • [1] WANG Y, CHEN K S, MISHLER J, CHO S C, ADROHER X C. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research[J]. Appl Energy, 2011, 88(4): 981-1007. doi: 10.1016/j.apenergy.2010.09.030
    [2] GASTEIGER H A, MARKOVI N M. Just a dream-or future reality[J]. Science, 2009, 324(5923): 48-49. doi: 10.1126/science.1172083
    [3] BING Y, LIU H, LEI Z, GHOSH D, ZHANG J. Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction[J]. Chem Soc Rev, 2010, 41(42): 2184-2202. https://www.researchgate.net/profile/Lei_Zhang64/publication/44630644_ChemInform_Abstract_Nanostructured_Pt-Alloy_Electrocatalysts_for_PEM_Fuel_Cell_Oxygen_Reduction_Reaction/links/571fbc8408aed056fa2356eb.pdf?origin=publication_list
    [4] MAZUMDER V, LEE Y, SUN S. Recent development of active nanoparticle catalysts for fuel cell reactions[J]. Adv Funct Mater, 2010, 20(8): 1224-1231. doi: 10.1002/adfm.v20:8
    [5] JEAN-PHILIPPE B, ABRAHAMYAN L G, GÉRARD F C A, NICOLE R, COHEN E A. Low-platinum and platinum free catalysts for the oxygen reduction reaction at fuel cell cathodes[J]. Energy Environ Sci, 2011, 4(4): 1238-1254. doi: 10.1039/c0ee00601g
    [6] 刘卫锋, 唐倩, 衣宝廉, 张华民.燃料电池阴极催化剂的研究进展[J].电源技术, 2002, 26(6): 457-461.

    LIU Wei-feng, TANG Qian, YI Bao-lian, ZHANG Hua-min. Research progress on cathode electrocatalyst for fuel cells[J]. Chin J Power Sources, 2002, 26(6): 457-461.
    [7] SHAOJUN G, SEN Z, SHOUHENG S. Tuning nanoparticle catalysis for the oxygen reduction reaction[J]. Angew Chem Int Ed, 2013, 52(33): 8526-8544. doi: 10.1002/anie.201207186
    [8] 张洁, 唐水花, 廖龙渝, 郁卫飞.低温燃料电池非铂催化剂研究进展[J].催化学报, 2013, 34(6): 1051-1065. doi: 10.1016/S1872-2067(12)60588-9

    ZHANG Jie, TANG Shui-hua, LIAO Long-yu, YU Wei-fei. Progress in non-platinum catalysts with applications in low temperature fuel cells[J]. Chin J Catal, 2013, 34(6): 1051-1065. doi: 10.1016/S1872-2067(12)60588-9
    [9] JAOUEN F, PROIETTI E, LEFÉVRE M, CHENITZ R, DODELET J P, WU G. Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells[J]. Energy Environ Sci, 2010, 4(1): 114-130. http://pubs.rsc.org/-/content/articlehtml/2011/ee/c0ee00011f
    [10] 张海艳, 曹春晖, 赵健, 林瑞, 马建新.燃料电池Pt基核壳结构电催化剂的最新研究进展[J].催化学报, 2013, 33(2): 222-229. http://www.cnki.com.cn/Article/CJFDTOTAL-CHUA201202005.htm

    ZHANG Hai-yan, CAO Chun-hui, ZHAO Jian, LIN Rui, MA Jian-xin. Recent development of Pt-based core-shell structured electrocatalysts in fuel cells[J]. Chin J Catal, 2013, 33(2): 222-229. http://www.cnki.com.cn/Article/CJFDTOTAL-CHUA201202005.htm
    [11] 曹春晖, 林瑞, 赵天天, 黄真, 马建新.用于燃料电池Co@Pt/C核壳结构催化剂的制备及表征[J].物理化学学报, 2013, 29(1): 95-101. http://www.cnki.com.cn/Article/CJFDTOTAL-WLHX201301017.htm

    CAO Chun-hui, LIN Rui, ZHAO Tian-tian, HUANG Zhen, MA Jian-xin. Preparation and characterization of core-shell Co@Pt/C catalyst for fuel cell[J]. Acta Phys-Chim Sin, 2013, 29(1): 95-101. http://www.cnki.com.cn/Article/CJFDTOTAL-WLHX201301017.htm
    [12] LONG N V, YANG Y, CAO M T, MINH N V, CAO Y, NOGAMI M. The development of mixture, alloy, and core-shell nano-catalysts with the support nano-materials for energy conversion in low temperature fuel cells[J]. Nano Energy, 2013, 2(5): 636-676. doi: 10.1016/j.nanoen.2013.06.001
    [13] CHEN Y, YANG F, DAI Y, WANG W, CHEN S. Ni@Pt core-shell nanoparticles: Synthesis, structural and electrochemical properties[J]. J Phys Chem C, 2008, 112(5): 1645-1649. doi: 10.1021/jp709886y
    [14] STAMENKOVIC V R, FOWLER B, MUN B S, WANG G, ROSS P N, LUCAS C A. Improved oxygen reduction activity on Pt3Ni (111) via increased surface site availability[J]. Science, 2007, 315(5811): 493-497. doi: 10.1126/science.1135941
    [15] MANI P, SRIVASTAVA R, STRASSER P. Dealloyed Pt-Cu core-shell nanoparticle electrocatalysts for use in PEM fuel cell cathodes[J]. J Phys Chem C, 2008, 112(7): 2770-2778. doi: 10.1021/jp0776412
    [16] ANTOLINI E, SALGADO J R C, GIZ M J, GONZALEZ E R. Effects of geometric and electronic factors on ORR activity of carbon supported Pt-Co electrocatalysts in PEM fuel cells[J]. Int J Hydrogen Energy, 2005, 30(11): 1213-1220. doi: 10.1016/j.ijhydene.2005.05.001
    [17] 于书平, 娄群, 刘润婷, 韩克飞, 汪中明, 朱红. Cu@Pt/MWCNTs-MnO2电催化剂的制备及电催化性能研究[J].化学学报, 2012, 70(22): 2359-2364. doi: 10.6023/A12050234

    YU Shu-ping, LOU Qun, LIU Run-ting, HAN Ke-fei, WANG Zhong-ming, ZHU Hong. Synthesis and electrocatalytic performance of Cu@Pt/MWCNTs-MnO2 electrocatalyst[J]. Acta Chim Sin, 2012, 70(22): 2359-2364. doi: 10.6023/A12050234
    [18] NEERGAT M, RAHUL R. Unsupported Cu-Pt core-shell nanoparticles: Oxygen reduction reaction (ORR) catalyst with better activity and reduced precious metal content[J]. J Electrochem Soc, 2012, 159(7): F234-F241. doi: 10.1149/2.039207jes
    [19] YANG H, DAI L, XU D, FANG J, ZOU S. Electrooxidation of methanol and formic acid on PtCu nanoparticles[J]. Electrochim Acta, 2010, 55(27): 8000-8004. doi: 10.1016/j.electacta.2010.03.026
    [20] DHAVALE V M, UNNI S M, KAGALWALA H N, PILLAI V K, KURUNGOT S. Ex-situ dispersion of core-shell nanoparticles of Cu-Pt on an in situ modified carbon surface and their enhanced electrocatalytic activities.[J]. Chem Commun, 2011, 47(13): 3951-3953. doi: 10.1039/c0cc05645f
    [21] MINTSOULI I, GEORGIEVA J, ARMYANOV S, VALOVA E, AVDEEV G, HUBIN A. Pt-Cu electrocatalysts for methanol oxidation prepared by partial galvanic replacement of Cu/carbon powder precursors[J]. Appl Catal B: Environ, 2013, 136-137(21): 160-167. https://www.researchgate.net/publication/257371319_Pt-Cu_electrocatalysts_for_methanol_oxidation_prepared_by_partial_galvanic_replacement_of_Cucarbon_powder_precursors
    [22] ROMÁN-MARTÍNEZ M C, CAZORLA-AMORÓS D, LINARES-SOLANO A, LECEA S M D, YAMASHITA H, ANPO M. Metal-support interaction in Pt/C catalysts. Influence of the support surface chemistry and the metal precursor[J]. Carbon, 1995, 33(1): 3-13. doi: 10.1016/0008-6223(94)00096-I
    [23] 杜春雨, 程新群, 史鹏飞, 尹鸽平.前驱体对碳载铂纳米催化剂的影响[J].电池, 2006, 36(3): 173-174. http://www.cnki.com.cn/Article/CJFDTOTAL-DACI200603003.htm

    DU Chun-yu, CHENG Xin-qun, SHI Peng-fei, YIN Ge-ping. Effect of precursors on carbon supported platinum nano-catalyst[J]. Battery Bimon, 2006, 36(3): 173-174. http://www.cnki.com.cn/Article/CJFDTOTAL-DACI200603003.htm
    [24] 王振波, 尹鸽平, 史鹏飞.三组Pt-Ru/C催化剂前驱体对其性能的影响[J].物理化学学报, 2005, 21(10): 1156-1160. http://www.cnki.com.cn/Article/CJFDTOTAL-WLHX200510018.htm

    WANG Zhen-bo, YIN Ge-ping, SHI Peng-fei. The Influence of three groups of Pt-Ru/C catalyst's precursors on its performance for direct methanol fuel cell[J]. Acta Phys-Chim Sin, 2005, 21(10): 1156-1160. http://www.cnki.com.cn/Article/CJFDTOTAL-WLHX200510018.htm
    [25] OH H S, OH J G, HONG Y G, KIM H. Investigation of carbon-supported Pt nanocatalyst preparation by the polyol process for fuel cell applications[J]. Electrochim Acta, 2007, 52(25): 7278-7285. doi: 10.1016/j.electacta.2007.05.080
    [26] BOCK C, PAQUET C, COUILLARD M, MOTTON G A, MACDOUGALL B R. Size-selected synthesis of PtRu nano-catalysts: Reaction and size control mechanism[J]. J Am Chem Soc, 2004, 126(25): 8028-37. doi: 10.1021/ja0495819
    [27] 藤岛昭.电化学测定方法[M].北京:北京大学出版社, 1995.

    FUJISHIMA A. Electrochemical Test Method[M]. Beijing: Peking University Press, 1995.
    [28] 安筱莎, 陈德俊, 周志有, 汪强, 樊友军, 孙世刚.稀土Eu掺杂PtRu/C催化剂及其对甲醇电氧化的性能[J].物理化学学报, 2010, 26(5): 1207-1213. http://www.cnki.com.cn/Article/CJFDTOTAL-WLHX201005006.htm

    AN Xiao-sha, CHEN De-jun, ZHOU Zhi-you, WANG Qiang, FAN You-jun, SUN Shi-gang. Rare earth Eu doped PtRu/C catalysts and their properties for methanol electrooxidation[J]. Acta Phys-Chim Sin, 2010, 26(5): 1207-1213. http://www.cnki.com.cn/Article/CJFDTOTAL-WLHX201005006.htm
    [29] TSENG C J, LO S T, LO S C, CHU P P. Characterization of Pt-Cu binary catalysts for oxygen reduction for fuel cell applications[J]. Mater Chem Phys, 2006, 100(2/3): 385-390. http://www.sciencedirect.com/science/article/pii/S0254058406000216
    [30] SHIFLETT W K, DUMESIC J A. Ammonia synthesis as a catalytic probe of supported ruthenium catalysts: The role of the support and the effect of chlorine[J]. Ind Eng Chem Fundam, 1981, 20(3): 246-250. doi: 10.1021/i100003a011
    [31] 王桂英, 廉红蕾, 周文辉, 张文祥, 蒋大振, 吴通好.氯离子含量对Au/ZnO催化剂常温CO氧化性能的影响[J].燃料化学学报, 2001, 29(增刊): 116-118. http://www.cnki.com.cn/Article/CJFDTOTAL-RLHX2001S1036.htm

    WANG Gui-ying, LIAN Hong-lei, ZHANG Wen-xiang, JIANG Da-zhen, WU Tong-hao. Effect of Cl on the performance of CO oxidation over Au/ZnO catalysts[J]. J Fuel Chem Technol, 2001, 29(Suppl.): 116-118. http://www.cnki.com.cn/Article/CJFDTOTAL-RLHX2001S1036.htm
    [32] KRISTIAN N, YU Y, LEE J M, LIU X, XIN W. Synthesis and characterization of Cocore-Ptshell electrocatalyst prepared by spontaneous replacement reaction for oxygen reduction reaction[J]. Electrochim Acta, 2010, 56(2): 1000-1007. doi: 10.1016/j.electacta.2010.09.073
    [33] SALGADO J R C, ANTOLINI E, GONZALEZ E R. Structure and activity of carbon-supported Pt-Co electrocatalysts for oxygen reduction[J]. J Phys Chem B, 2004, 108(46): 17767-17774. doi: 10.1021/jp0486649
    [34] SALGADO J R C, ANTOLINI E, GONZALEZ E R. Preparation of Pt-Co/C electrocatalysts by reduction with borohydride in acid and alkaline media: the effect on the performance of the catalyst[J]. J Power Sources, 2004, 138(138): 56-60.
    [35] 王爱丽, 孙瑜, 梁志修, 陈胜利. Pt纳米催化剂在质子交换膜燃料电池催化层中的尺寸效应研究[J].化学学报, 2009, 67(22): 2554-2558. http://www.cnki.com.cn/Article/CJFDTOTAL-HXXB200922007.htm

    WANG Ai-li, SUN Yu, LIANG Zhi-xiu, CHEN Sheng-li. Particle size effects of Pt nanocatalyst in the catalyst layer of proton exchange membrane fuel cell[J]. Acta Chim Sin, 2009, 67(22): 2554-2558. http://www.cnki.com.cn/Article/CJFDTOTAL-HXXB200922007.htm
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  63
  • HTML全文浏览量:  22
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-07
  • 修回日期:  2016-02-24
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-05-10

目录

    /

    返回文章
    返回