留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属助剂对Ni/SiO2催化剂苯甲醚加氢脱氧性能的影响

李风旭 王晓菲 郑莹 陈吉祥

李风旭, 王晓菲, 郑莹, 陈吉祥. 金属助剂对Ni/SiO2催化剂苯甲醚加氢脱氧性能的影响[J]. 燃料化学学报(中英文), 2018, 46(1): 75-83.
引用本文: 李风旭, 王晓菲, 郑莹, 陈吉祥. 金属助剂对Ni/SiO2催化剂苯甲醚加氢脱氧性能的影响[J]. 燃料化学学报(中英文), 2018, 46(1): 75-83.
LI Feng-xu, WANG Xiao-fei, ZHENG Ying, CHEN Ji-xiang. Influence of metallic promoters on the performance of Ni/SiO2 catalyst in the hydrodeoxygenation of anisole[J]. Journal of Fuel Chemistry and Technology, 2018, 46(1): 75-83.
Citation: LI Feng-xu, WANG Xiao-fei, ZHENG Ying, CHEN Ji-xiang. Influence of metallic promoters on the performance of Ni/SiO2 catalyst in the hydrodeoxygenation of anisole[J]. Journal of Fuel Chemistry and Technology, 2018, 46(1): 75-83.

金属助剂对Ni/SiO2催化剂苯甲醚加氢脱氧性能的影响

基金项目: 

国家自然科学基金 21576193

详细信息
  • 本文的英文电子版由 Elsevier 出版社在 ScienceDirect 上出版(http://www.sciencedirect.com/science/journal/18725813).
  • 中图分类号: O643

Influence of metallic promoters on the performance of Ni/SiO2 catalyst in the hydrodeoxygenation of anisole

Funds: 

the National Natural Science Foundation of China 21576193

More Information
  • 摘要: 采用等体积浸渍法制备了Ni/SiO2及Ni与金属助剂MM=Fe、Co、Cu、Zn及Ga)物质的量比为30的Ni基双金属催化剂(记作Ni30M/SiO2),利用H2-TPR、XRD、H2化学吸附、NH3-TPD以及N2物理吸附-脱附等手段对催化剂进行了结构表征,研究了不同助剂对催化剂结构与苯甲醚加氢脱氧性能影响。结果发现,金属助剂影响了催化剂前驱体中镍物种的还原性能,表明金属助剂及镍之间存在一定相互作用。Ni30M/SiO2中Ni-M双金属晶粒粒径和Ni/SiO2中金属Ni晶粒粒径相近。由于表面张力较低的金属会在双金属晶粒表面富集,Ni30M/SiO2的H2化学吸附量不同程度地低于Ni/SiO2。另外,Ni30M/SiO2催化剂的酸量(尤其较弱酸中心酸量)高于Ni/SiO2。在300℃、常压、苯甲醚质量空速1.0 h-1及H2与苯甲醚物质的量比为25:1条件下考察了各催化剂苯甲醚的加氢脱氧性能。Ni30M/SiO2上苯甲醚转化率不同程度低于Ni/SiO2,原因在于Ni30M/SiO2催化剂H2化学吸附量较低。Ga及Zn改性催化剂上三苯(包括苯、甲苯及二甲苯)选择性分别为81.7%和76.8%,高于Ni/SiO2(71.5%),且Ni30Ga/SiO2及Ni30Zn/SiO2上三苯收率(分别为65.0%及63.8%)高于或接近于Ni/SiO2(63.7%)。Ni/SiO2及Ni30M/SiO2催化剂中,Ni30Zn/SiO2具有较高甲基转移能力及较低C-C键氢解活性。从提高碳收率、降低耗氢量角度而言,Ni30Zn/SiO2具有较佳的加氢脱氧性能,与Ni和Zn之间作用及Zn亲氧性高于Ni有关。
    1)  本文的英文电子版由 Elsevier 出版社在 ScienceDirect 上出版(http://www.sciencedirect.com/science/journal/18725813).
  • 图  1  Ni/SiO2及Ni30M/SiO2催化剂前驱体的H2-TPR谱图

    Figure  1  H2-TPR profiles of the Ni/SiO2 and Ni30M/SiO2 catalyst precursors

    图  2  Ni/SiO2及Ni30M/SiO2催化剂的XRD谱图

    Figure  2  XRD patterns of the Ni/SiO2 and Ni30M/SiO2 catalysts

    图  3  Ni/SiO2及Ni30M/SiO2催化剂的NH3-TPD谱图

    Figure  3  NH3-TPD profiles of the Ni/SiO2 and Ni30M/SiO2

    图  4  苯甲醚加氢脱氧可能的反应路径示意图

    Figure  4  Possible reaction pathways in the HDO of anisole

    图  5  Ni/SiO2及Ni30M/SiO2催化剂上苯甲醚转化率、三苯收率以及主要产物选择性

    Figure  5  Anisole conversion, BTX yield and product selectivity for HDO of anisole on the Ni/SiO2 and Ni30M/SiO2 catalysts

    图  6  Ni/SiO2及Ni30M/SiO2催化剂上苯选择性、甲苯和二甲苯总选择性及nB/nTX比值

    Figure  6  Selectivity to benzene, selectivity to toluene plus xylenes and nB/nTX ratio for HDO of anisole on the Ni/SiO2 and Ni30M/SiO2 catalysts

    图  7  Ni/SiO2及Ni30M/SiO2催化剂上的正己烷选择性

    Figure  7  Selectivity to n-hexane for HDO of anisole on the Ni/SiO2 and Ni30M/SiO2 catalysts

    图  8  Ni/SiO2及Ni30M/SiO2催化剂上nCH4/n△AnisolenCO/n△Anisole比值

    Figure  8  nCH4/n△Anisole and nCO/n△Anisole mol ratios on the Ni/SiO2 and Ni30M/SiO2 catalysts

    表  1  Ni/SiO2及Ni30M/SiO2催化剂物理化学性质

    Table  1  Physical-chemical properties of the Ni/SiO2 and Ni30M/SiO2 catalysts

    Catalyst ABET/
    (m2·g-1)
    vp/
    (cm3·g-1)
    dp/nm Crystallite
    sizea/nm
    H2 uptake/
    (μmol·g-1)
    TOFb/s-1 Relative acid amountc
    total acid (Ⅰ) (Ⅱ) nS/nWd
    Ni/SiO2 314 0.53 5.6 7.2 70 0.04 1.00 0.24 0.76 3.17
    Ni30Fe/SiO2 342 0.53 6.6 6.8 1.1 2.46 1.38 0.35 1.03 2.94
    Ni30Co/SiO2 330 0.52 6.6 6.7 17 0.12 1.11 0.31 0.81 2.61
    Ni30Cu/SiO2 366 0.57 6.6 7.1 7.4 0.27 1.26 0.41 0.85 2.07
    Ni30Zn/SiO2 341 0.54 6.6 7.7 44 0.04 1.22 0.51 0.71 1.39
    Ni30Ga/SiO2 329 0.56 6.6 6.4 49 0.05 1.46 0.53 0.93 1.79
    a: calculated by Scherrer equation based on the reflection of Ni (111); b: calculated from the H2 chemisorption; c: designing the total acid amount of Ni/SiO2 as 1.0 ((Ⅰ) NH3 desorption temperature < 250 ℃; (Ⅱ) NH3 desorption temperature >250 ℃); d: the ratio between the amount of strong acid (NH3 desorption temperature < 250 ℃) and weak acid (NH3 desorption temperature >250 ℃)
    下载: 导出CSV
  • [1] BRIDGWATER A V. Review of fast pyrolysis of biomass and product upgrading[J]. Biomass Bioenergy, 2012, 38(2):68-94. https://eclass.duth.gr/modules/document/file.php/TMC233/%CE%92%CE%B9%CE%B2%CE%BB%CE%B9%CE%BF%CE%B3%CF%81%CE%B1%CF%86%CE%AF%CE%B1/Review%20of%20fast%20pyrolysis%202011.pdf
    [2] SAIDI M, SAMIMI F, KARIMIPOURFARD D, NIMMANWUDIPONG T, GATES B C, RAHIMPOUR M R. Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation[J]. Energy Environ Sci, 2013, 7(1):103-129. http://pubs.rsc.org/en/content/articlelanding/2014/ee/c3ee43081b#!divAbstract
    [3] RUNNEBAUM R C, NIMMANWUDIPONG T, BLOCK D E, GATES B C. Catalytic conversion of compounds representative of lignin-derived bio-oils:A reaction network for guaiacol, anisole, 4-methylanisole, and cyclohexanone conversion catalysed by Pt/γ-Al2O3[J]. Catal Sci Technol, 2012, 2:113-118. doi: 10.1039/C1CY00169H
    [4] HONKELA M L, BJÖRK J, PERSSON M. Computational study of the adsorption and dissociation of phenol on Pt and Rh surfaces[J]. Phys Chem Chem Phys, 2012, 14(16):5849-5854. doi: 10.1039/c2cp24064e
    [5] GUTIERREZ A, KAILA R K, HONKELA M L, SLIOOR R, KRAUSE A O I. Hydrodeoxygenation of guaiacol on noble metal catalysts[J]. Catal Today, 2009, 147(3/4):239-246. http://www.sciencedirect.com/science/article/pii/S0920586108005397
    [6] LIU C, SHAO Z, XIAO Z, WILLIAMS C T, LIANG C. Hydrodeoxygenation of benzofuran over silica-alumina-supported Pt, Pd, and Pt-Pd catalysts[J]. Energy Fuels, 2012, 26(2):4205-4211. doi: 10.1007/s11144-012-0495-4
    [7] HONG D Y, MILLER S J, AGRAWAL P K, JONES C W. Hydrodeoxygenation and coupling of aqueous phenolics over bifunctional zeolite-supported metal catalysts[J]. Chem Commun, 2010, 46(7):1038-1040. doi: 10.1039/B918209H
    [8] JIN S H, XIAO Z H, LI C, CHEN X, WANG L, XING J C, LI W Z, LIANG C H. Catalytic hydrodeoxygenation of anisole as lignin model compound over supported nickel catalysts[J]. Catal Today, 2014, 234:125-132. doi: 10.1016/j.cattod.2014.02.014
    [9] LENG S, WANG X D, HE X B, LIU L, LIU Y E, ZHONG X, ZHUANG G L, WANG J G. NiFe/γ-Al2O3:A universal catalyst for the hydrodeoxygenation of bio-oil and its model compounds[J]. Catal Commun, 2013, 41:34-37. doi: 10.1016/j.catcom.2013.06.037
    [10] SUN J M, AYMAN M K, ZHANG H, KOVARIK L. Carbon-supported bimetallic Pd-Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol[J]. J Catal, 2013, 306(1):47-57. https://www.sciencedirect.com/science/article/pii/S0021951713001930
    [11] DO P T M, FOSTER A J, CHEN J G, LOBO R F. Bimetallic effects in the hydrodeoxygenation of meta-cresol onγ-Al2O3 supported Pt-Ni and Pt-Co catalysts[J]. Green Chem, 2012, 14(14):1388-1397. http://www.academia.edu/34480262/Lignin_as_a_Renewable_Aromatic_Resource_for_the_Chemical_Industry
    [12] HAMM G, SCHMIDT T, BREITBACH J, FRANKE D, BECKER C, WANDELT K. The adsorption of benzene on Pd (111) and ordered Sn/Pd (111) surface alloys[J]. Surf Sci, 2004, 562(1/3):170-182. https://www.researchgate.net/publication/229229843_The_adsorption_of_benzene_on_Pd111_and_ordered_SnPd111_surface_alloys
    [13] BREITBACH J, FRANKE D, HAMM G, BECKER C, WANDELT K. Adsorption of benzene on ordered Sn/Pt (111) surface alloys[J]. Surf Sci, 2002, 507-510(2):18-22. https://www.researchgate.net/publication/231396371_Adsorption_of_Cyclohexane_and_Benzene_on_Ordered_SnPt111_Surface_Alloys
    [14] SHI D, ARROYO-RAMIREZ L, VOHE J M. The use of bimetallics to control the selectivity for the upgrading of lignin-derived oxygenates:Reaction of anisole on Pt and PtZn catalysts[J]. J Catal, 2016, 340:219-226. doi: 10.1016/j.jcat.2016.05.020
    [15] BYKOVA M V, ERMAKOV Y D, KAICHEV V V, BULAVCHEMKO O A, SARAEV A A, LEBEDEV M Y, YAKOVLEV V A. Ni-based sol-gel catalysts as promising systems for crude bio-oil upgrading:Guaiacol hydrodeoxygenation study[J]. Appl Catal B:Environ, 2012, 113-114(1):296-307. https://www.sciencedirect.com/science/article/pii/S0926337311005601
    [16] ARDIYANTI A R, KHROMOVA S A, VENDERBOSCH R H, YAKOVLEV V A, HREERES H J. Catalytic hydrotreatment of fast-pyrolysis oil using non-sulfided bimetallic Ni-Cu catalysts on aδ-Al2O3 support[J]. Appl Catal B:Environ, 2012, 117-118:105-117. doi: 10.1016/j.apcatb.2011.12.032
    [17] LEI N, PRISCILLA M, FABIO B, WEI A, SOOKNOI T, RESASCO D E. Selective conversion of m-cresol to toluene over bimetallic Ni-Fe catalysts[J]. J Mol Catal A:Chem, 2014, 388-389:47-55. doi: 10.1016/j.molcata.2013.09.029
    [18] KHROMVA S A, SMIRNOV A A, BULAVCHENK O A, SARAEV A A, KAICHEV V V, RESHETNIKOV S I, YAKOVEM V A. Anisole hydrodeoxygenation over Ni-Cu bimetallic catalysts:The effect of Ni/Cu ratio on selectivity[J]. Appl Catal A:Gen, 2014, 470(2):261-270. https://www.sciencedirect.com/science/article/pii/S0926860X13006637
    [19] DELATTE L C, SANTOS M, MEDINA J A. Structure of Metallic Catalysts[M]. New York:Academic Press, 1975, 72(72):417-425.
    [20] LIU P, NÊRSKOV J K. Ligand and ensemble effects in adsorption on alloy surfaces[J]. Phys Chem Chem Phys, 2001, 3(11):3814-3818.
    [21] MILE B, STIRLING D, ZAMMITT M A, LOVELL A, WEBB M. The location of nickel oxide and nickel in silica-supported catalysts:Two forms of "NiO" and the assignment of temperature-programmed reduction profiles[J]. J Catal, 1989, 20(2):217-229. https://www.sciencedirect.com/science/article/pii/0021951788900267
    [22] LI K, WANG R, CHEN J. Hydrodeoxygenation of anisole over silica-supported Ni2P, MoP, and NiMoP catalysts[J]. Energy Fuels, 2011, 25(3):854-863. doi: 10.1021/ef101258j
    [23] ROBERTSON S D, MCNICOL B D, BAAS J H, KOLET SC, JENKINS JW. Determination of reducibility and identification of alloying in copper-nickel-on-silica catalysts by temperature-programmed reduction[J]. J Catal, 1975, 37(3):424-431. doi: 10.1016/0021-9517(75)90179-7
    [24] ROGATIS L D, MONTINI T, COGNIGNI A. Methane partial oxidation on NiCu-based catalysts[J]. Catal Today, 2009, 145(1/2):176-185. https://www.sciencedirect.com/science/article/pii/S0920586108001569
    [25] GAOW, LI C M, CHEN H, WU M, HE S, WEI M, EVANS D G, D X. Supported nickel-iron nanocomposites as a bifunctional catalyst towards hydrogen generation from N2H4·H2O[J]. Green Chem, 2014, 16(3):1560. doi: 10.1039/c3gc41939h
    [26] ISHIHARA T, EGUCHI K, ARA H. ChemInform abstract:hydrogenation of carbon monoxide over SiO2-supported Fe-Co, Co-Ni, and Ni-Fe bimetallic catalysts[J]. Appl Catal, 1987, 18(51):225-238. doi: 10.1002/chin.198751127/full
    [27] PANDEY D, DEO G. Promotional effects in alumina and silica supported bimetallic Ni-Fe catalysts during CO2 hydrogenation[J]. J Mol Catal A:Chem, 2014, 382(382):23-30. https://www.sciencedirect.com/science/article/pii/S1381116913003956
    [28] MENG F H, ZHONG P Z, LI Z, CUI X X, ZHENG H Y. Surface structure and catalytic performance of Ni-Fe catalyst for low-temperature CO hydrogenation[J]. J Chem, 2014, (5):1-72. https://www.hindawi.com/journals/jchem/2014/534842/
    [29] YU X, CHEN J, REN T. Promotional effect of Fe on performance of Ni/SiO2 for deoxygenation of methyl laurate as a model compound to hydrocarbons[J]. RSC Adv, 2014, 4(87):46427-46436. doi: 10.1039/C4RA07932A
    [30] 黄传敬, 郑小明.担载型镍催化剂上CH4/CO2重整反应的研究Ⅱ.添加Co对Ni/Al2O3催化剂性能的影响[J].淮北师范大学学报(自然科学版), 2000, 21(1):43-53. http://www.whxb.pku.edu.cn/CN/abstract/abstract28912.shtml

    HUANG Chuan-jing, ZHENG Xiao-ming. Study on CH4/CO2 reforming reaction on Supported Nickel Catalyst Ⅱ. Effect of Co addition on the performance of Ni/Al2O3catalyst[J]. J Huaibei Normal Univ(Nat Sci Ed), 2000, 21(1):43-53. http://www.whxb.pku.edu.cn/CN/abstract/abstract28912.shtml
    [31] WANG X F, WANG F, CHEN M Y, REN J. Studies on nickel-based bimetallic catalysts for hydrodeoxygenation[J]. J Fuel Chem Technol, 2005, 33(5):612-616. http://en.cnki.com.cn/Article_en/CJFDTOTAL-RLHX200505020.htm
    [32] LI C M, CHEN Y D, ZHANG S T, ZHOU J Y, WANG F, HE S, WEI M, EVANS D G, D X. Nickel-gallium intermetallic nanocrystal catalysts in the semihydrogenation of phenylacetylene[J]. ChemCatChem, 2014, 6(3):824-831. doi: 10.1002/cctc.201300813
    [33] SITTHISA S, WEI A, RESASCO D E. Selective conversion of furfural to methylfuran over silica-supported Ni-Fe bimetallic catalysts[J]. J Catal, 2011, 284(1):90-101. doi: 10.1016/j.jcat.2011.09.005
    [34] HUYNH T M, ARMBRUSTER U, POHL M M, SCHNEIDER M, RADNIK J, HOANG D-L, PHAN B M Q, NGUYEN D A, MARTIN A. Hydrodeoxygenation of phenol as a model compound for bio-oil on non-noble bimetallic nickel-based catalysts[J]. ChemCatChem, 2014, 6(7):1940-1951. doi: 10.1002/cctc.v6.7
    [35] GANDARIA I, REQUIES J, ARIAS P L, ARMBRUSTER U, MARTIN A. Liquid-phase glycerol hydrogenolysis by formic acid over Ni-Cu/Al2O3 catalysts[J]. J Catal, 2013, 290(12):79-89. http://www.cjche.com.cn/EN/Y2010/V18/I3/384
    [36] FELIX S, FRANK A P, THOMAS B, RASMUS Z S, CLAUS H C, JENS K N. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene[J]. Science, 2008, 320(5881):1320-1322. doi: 10.1126/science.1156660
    [37] SHARAFUTDINO I, ELKJAER C F, DE CARVALHO H W P, GARDINI D, CHIARELLO G G, DAMSGAARD C D, WAGNER J B, GRUNWALDT J D, DAHL S, CHORKENDORFF I. Intermetallic compounds of Ni and Ga as catalysts for the synthesis of methanol[J]. J Catal, 2014, 320:77-88. doi: 10.1016/j.jcat.2014.09.025
    [38] LANGE, ADOLPH N. Lange's Handbook of Chemistry[M]. New York:Mcgraw-Hill Book Company, 1999, 5(4):687-688.
    [39] CHEN Y J, CHEN J X. Selective hydrogenation of acetylene on SiO2 supported Ni-In bimetallic catalysts:Promotional effect of In[J]. Appl Surf Sci, 2016, 387:16-27. doi: 10.1016/j.apsusc.2016.06.067
    [40] HADJⅡVANOV K, MIHAYLOV M, KLISSURSKI D, STEFANOV P, ABADJIEVA N, VASSILEVA, MINTCHEV L. Characterization of Ni/SiO2 catalysts prepared by successive deposition and reduction of Ni2+ ions[J]. J Catal, 1999, 185(2):314-323. doi: 10.1006/jcat.1999.2521
    [41] ZHU X, LOBBAN L L, MALLINSON R G, REASASCO D E. Bifunctional transalkylation and hydrodeoxygenation of anisole over a Pt/HBeta catalyst[J]. J Catal, 2011, 281(1):21-29. doi: 10.1016/j.jcat.2011.03.030
    [42] FERRARI M, MAGGI R, DELMON B, GRANGE P. Influences of the hydrogen sulfide partial pressure and of a nitrogen compound on the hydrodeoxygenation activity of a CoMo/Carbon catalyst[J]. J Catal, 2001, 198(1):47-55. doi: 10.1006/jcat.2000.3103
    [43] GONZALEZBORJA M A, RESASCO D E, Anisole and guaiacol hydrodeoxygenation over monolithic Pt-Sn catalysts[J]. Energy Fuels, 2011, 25(9):4155-4162. doi: 10.1021/ef200728r
    [44] WANG H, MALE J, WANG Y. Recent advances in hydrotreating of pyrolysis bio-oil and its oxygen-containing model compounds[J]. ACS Catal, 2013, 3(5):1047-1070. doi: 10.1021/cs400069z
    [45] FURIMSKY E. Catalytic hydrodeoxygenation[J]. Appl Catal A:Gen, 2000, 199(2):147-190. doi: 10.1016/S0926-860X(99)00555-4
    [46] ROMERO Y, RICHARD F, BRUNET S. Hydrodeoxygenation of 2-ethylphenol as a model compound of bio-crude over sulfided Mo-based catalysts:Promoting effect and reaction mechanism[J]. Appl Catal B:Environ, 2010, 98(98):213-223. https://www.sciencedirect.com/science/article/pii/S0926337310002407
    [47] PHUONG T M, ANDREW J F, CHEN J, RAUL F L. Bimetallic effects in the hydrodeoxygenation of meta-cresol onγ-Al2O3 supported Pt-Ni and Pt-Co catalysts[J]. Green Chem, 2012, 14(5):1388-1397. doi: 10.1039/c2gc16544a
    [48] YANG Y X, OCHOA-HERNANDEZ C, O'SHEA V A D L P, PIZARRO P, CORONADO J M, SERRANO D P. Effect of metal-support interaction on the selective hydrodeoxygenation of anisole to aromatics over Ni-based catalysts[J]. Appl Catal B:Environ, 2014, 145(1):91-100. https://www.sciencedirect.com/science/article/pii/S0926337313001975
    [49] CHEN J X, SHI H, LI L, LI K L. Deoxygenation of methyl laurate as a model compound to hydrocarbons on transition metal phosphide catalysts[J]. Appl Catal B:Environ, 2014, 144(2):870-884.
    [50] SHI D M, LISANDRA A R, JOHN M V. The use of bimetallics to control the selectivity for the upgrading of lignin-derived oxygenates:Reaction of anisole on Pt and PtZn catalysts[J]. J Catal, 2006, 340:219-226.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  135
  • HTML全文浏览量:  47
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-06
  • 修回日期:  2017-10-16
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-01-10

目录

    /

    返回文章
    返回