留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中低温煤焦油重油正庚烷萃余物的反应(甲醛)分离与分析

冯新娟 闵小建 郑化安 樊英杰 李亚波 孔祥玺 万冲 孙鸣 马晓迅

冯新娟, 闵小建, 郑化安, 樊英杰, 李亚波, 孔祥玺, 万冲, 孙鸣, 马晓迅. 中低温煤焦油重油正庚烷萃余物的反应(甲醛)分离与分析[J]. 燃料化学学报(中英文), 2018, 46(1): 15-26.
引用本文: 冯新娟, 闵小建, 郑化安, 樊英杰, 李亚波, 孔祥玺, 万冲, 孙鸣, 马晓迅. 中低温煤焦油重油正庚烷萃余物的反应(甲醛)分离与分析[J]. 燃料化学学报(中英文), 2018, 46(1): 15-26.
FENG Xin-juan, MIN Xiao-jian, ZHENG Hua-an, FAN Ying-jie, LI Ya-bo, KONG Xiang-xi, WAN Chong, SUN Ming, MA Xiao-xun. Reaction (formaldehyde) separation and analysis of n-heptane extraction residue from heavy oil of medium and low temperature coal tar[J]. Journal of Fuel Chemistry and Technology, 2018, 46(1): 15-26.
Citation: FENG Xin-juan, MIN Xiao-jian, ZHENG Hua-an, FAN Ying-jie, LI Ya-bo, KONG Xiang-xi, WAN Chong, SUN Ming, MA Xiao-xun. Reaction (formaldehyde) separation and analysis of n-heptane extraction residue from heavy oil of medium and low temperature coal tar[J]. Journal of Fuel Chemistry and Technology, 2018, 46(1): 15-26.

中低温煤焦油重油正庚烷萃余物的反应(甲醛)分离与分析

基金项目: 

国家自然科学基金 21536009

国家自然科学基金 21406178

陕西省重点研发计划项目 2017ZDCXL-GY-10-03

陕西省青年科技新星支持计划 2017KJXX-62

陕西省自然科学基础研究计划项目 2017JQ2040

西北大学"优秀青年学术骨干支持计划" 2015

详细信息
  • 中图分类号: TQ523

Reaction (formaldehyde) separation and analysis of n-heptane extraction residue from heavy oil of medium and low temperature coal tar

Funds: 

the National Natural Science Foundation of China 21536009

the National Natural Science Foundation of China 21406178

Science and Technology Plan Projects of Shanxi Province 2017ZDCXL-GY-10-03

the Young Science and Technology Star Project of Shaanxi Province 2017KJXX-62

Project Academic Supported by Natural Science Basic Research Plan in Shaanxi Province of China 2017JQ2040

Foundation of Outstanding Young Backbone Supporting Program of Northwest University 2015

More Information
  • 摘要: 以陕北中低温煤焦油重油为原料,采用正庚烷溶剂萃取得到煤焦油正庚烷萃余物(H-CT)并与甲醛反应,通过溶剂萃取法将反应后产物(P)分为:正庚烷可溶物(HS-P)、正庚烷不溶甲苯可溶物(HI-TS-P)、甲苯不溶喹啉可溶物(TI-QS-P)和喹啉不溶物(QI-P)。借助GC-MS、FT-IR、TG-FTIR等分析手段,对P的结构组成进行了表征。结果表明,与H-CT相比,P中TI-QS-P组分和氧原子的含量较多,C/H原子比较高;HS-P、HI-TS-P、TI-QS-P和QI-P的含量分别为11.63%、26.42%、57.08%和4.88%;HS-P和HI-TS-P均以中性组分(以芳烃为主)为主,酸性组分(以酚类为主)含量较少,其余为含O、N、S等杂原子化合物;TI-QS-P富集了羰基、亚甲基桥键及稠环芳香化合物,且含酚羟基及芳环取代物,具有较高的热稳定性。
  • 图  1  H-CT反应分离与分析路线示意图

    Figure  1  Reaction separation and analysis routes of H-CT

    图  2  样品的总离子流色谱图

    Figure  2  GC-MS total ion chromatogram of samples

    (a): TS-H-CT; (b): HS-P; (c): HI-TS-P

    图  3  TS-H-CT、HI-TS-P及HS-P中各类化合物的含量

    Figure  3  Content of various components in TS-H-CT, HI-TS-P and HS-P

    1: neutral components; 2: acid components; 3: xygenous compounds; 4: nitrogenous compounds; 5: sulfur compounds

    图  4  H-CT、P及TI-QS组分的TG和DTG曲线

    Figure  4  TG and DTG curves of H-CT(a), P(b), TI-QS-H-CT (c) and TI-QS-P(d)

    图  5  TI-QS-P热解挥发分的红外光谱3D

    Figure  5  3D FT-IR spectra of the pyrolysis volatile of TI-QS-P

    图  6  样品的热解过程中挥发分的FT-IR谱图

    Figure  6  FT-IR spectra of volatiles during pyrolysis of samples

    (a): H-CT; (b): P; (c): TI-QS-H-CT; (d): TI-QS-P

    图  7  H-CT、P及各组分的FT-IR谱图

    Figure  7  FT-IR spectra of H-CT, P and each components

    表  1  中低温煤焦油重油的基本性质

    Table  1  Basic properties of heavy coal tar

    Sample Phenol
    w/%
    Density(20 ℃)
    /(mg·cm-3)
    Moisture
    w/%
    Carbon residue
    w/%
    TI
    w/%
    Ultimate analysis wad/%
    C H O* N S
    H-tar 30 1.066 3.76 3.14 0.84 79.17 7.88 11.93 0.85 0.17
    *: by difference
    下载: 导出CSV

    表  2  H-CT和P的组成分析

    Table  2  Composition analysis of H-CT and P

    Sample Group composition w/% Ultimate analysis wad/% C/H
    (atomic ratio)
    TS TI-QS QI C H O* N S
    H-CT 78.19 21.19 0.62 80.07 5.97 11.81 1.61 0.54 13.41
    P 26.42 57.08 4.88 75.15 5.46 17.89 1.50 0.29 13.76
    *: by difference
    下载: 导出CSV

    表  3  TS-H-CT、HS-P和HI-TS-P组分中部分组分分析

    Table  3  Part of components detected by GC-MS in TS-H-CT, HS-P and HI-TS-P

    No. TS-H-CT RT/
    min
    HS-P RT/
    min
    HI-TS-P RT/
    min
    name of compound relative
    area/%
    name of compound relative
    area/%
    name of compound relative
    area/%
    1 p-xylene 1.36 4.56 isoquinoline 1.82 15.30 benzene,
    1, 3-dimethyl-
    9.57 4.55
    2 phenol 1.59 7.53 quinoline,
    2, 6-dimethyl-
    0.65 22.73 o-xylene 2.47 5.08
    3 phenol,
    2-methyl-
    1.05 10.16 hydroxytoluic
    acid
    1.13 23.36 quinoline 0.92 18.19
    4 acetophenone 0.57 10.60 quinoline,
    2, 4-dimethyl-
    0.75 23.63 bicyclo[3.2.1]oct
    -2-ene, 3-methyl-4-methylene-
    0.82 27.03
    5 phenol, 3-methyl- 4.30 11.02 1-naphthalenol,
    2-methyl-
    0.60 30.40 quinoline,
    2, 4-dimethyl-
    0.54 27.26
    6 benzenemethanol, .alpha.
    , .alpha.-dimethyl-
    0.80 11.41 dibenzofuran,
    4-methyl-
    0.56 30.93 naphthalene,
    1-ethoxy-
    0.65 30.47
    7 phenol, 2,
    4-dimethyl-
    1.20 14.23 phenanthrene 1.77 36.19 1-naphthalenol,
    2-methyl-
    0.63 34.27
    8 phenol, 4-ethyl- 1.71 15.12 dibenzo[b, e]7, 8-
    diazaBicYclo[2.2.2]
    octa-2, 5-diene
    1.35 36.55 1-naphthalenol,
    2-methyl-
    0.58 34.54
    9 phenol, 3, 4-
    dimethyl-
    2.57 15.26 9H-fluorene, 9,
    9-dimethyl-
    0.65 37.90 1-naphthalenol,
    2-methyl-
    0.65 35.27
    10 naphthalene 0.92 15.74 phenanthrene,
    2-methyl-
    0.84 40.61 1-naphthol,
    5, 7-dimethyl-
    0.68 38.10
    11 phenol, 3, 4-
    dimethyl-
    1.08 16.34 anthracene,
    2-methyl-
    1.44 40.92 1-naphthol,
    6, 7-dimethyl-
    0.55 38.20
    12 catechol 0.58 16.78 anthracene,
    9-methyl-
    1.24 41.35 anthracene 0.82 40.11
    13 phenol,
    3-(1-methylethyl)-
    0.57 17.94 anthracene,
    2-methyl-
    0.97 41.46 anthracene 0.68 40.48
    14 benzene, 1-ethyl-
    4-methoxy-
    0.87 18.41 4-hydroxy-9-
    fluorenone
    0.54 42.44 2H-isoindole,
    4, 5, 6, 7-tetramethyl-
    0.87 44.30
    15 phenol, 2-ethyl-
    4-methyl-
    1.36 19.45 phenanthrene,
    1, 7-dimethyl-
    0.68 44.96 anthracene,
    9-methyl-
    0.71 45.29
    16 1, 2-benzenediol,
    3-methyl-
    0.58 19.60 phenanthrene,
    2, 5-dimethyl-
    0.80 45.37 phenanthrene,
    1-methyl-
    0.54 45.40
    17 1, 2-benzenediol,
    4-methyl-
    1.17 21.02 phenanthrene,
    2, 5-dimethyl-
    0.93 45.56 dibutyl
    phthalate
    1.63 47.04
    18 1H-inden-5-ol,
    2, 3-dihydro-
    1.29 23.01 fluoranthene 2.06 45.95 fluoranthene 1.29 49.90
    19 1, 4-benzenediol,
    2, 5-dimethyl-
    0.62 23.70 dibenz[b, e]oxepin-
    11(6H)-one
    0.69 46.61 3, 4-dihydro-1-
    methyl-3-oxo-4-
    oxaphenanthrene
    0.61 50.53
    20 6-methyl-
    4-indanol
    0.76 27.64 pyrene 2.13 47.57 pyrene 1.52 51.52
    21 1-naphthalenol 2.79 30.57 benzo[b]naphtho
    [2, 3-d]furan
    0.74 47.90 3-phenanthrol 0.93 52.54
    22 1-naphthalenol,
    2-methyl-
    1.14 34.21 benzo[b]naphtho
    [2, 3-d]furan
    0.67 48.42 9-ahthraldehyde
    semicarbazone
    1.35 52.90
    23 1-naphthalenol,
    2-methyl-
    1.56 34.56 pyrene,
    1-methyl-
    0.81 49.79 pyrene,
    1-methyl-
    0.58 53.74
    24 1-naphthalenol,
    2-methyl-
    1.47 34.65 11H-benzo[b]
    fluorene
    2.05 50.67 11H-benzo[b]
    fluorene
    1.31 54.62
    25 1-naphthalenol,
    2-methyl-
    0.69 35.25 retene 4.22 50.94 retene 2.79 54.88
    26 1-naphthalenol,
    2-methyl-
    1.50 35.42 11H-benzo[b]
    fluorene
    1.08 51.20 pyrene,
    1-methyl-
    0.63 55.29
    27 naphthalene, 1, 2-dihydro
    -2, 5, 8-trimethyl-
    0.57 38.15 pyrene,
    1-methyl-
    0.73 51.36 pyrene,
    1-methyl-
    0.95 55.98
    28 1-naphthol,
    6, 7-dimethyl-
    0.79 39.17 pyrene,
    1-methyl-
    0.79 52.24 pyrene,
    1-methyl-
    0.59 56.19
    29 1-naphthol,
    6, 7-dimethyl-
    0.71 39.78 3-indolizineacetamide,
    N-(2hydroxyethyl)-.
    alpha.-oxo-2-phenyl-
    2.25 52.90 1-phenyl-1H-
    inden-4-ol
    0.99 56.68
    30 2-dibenzofuranol 0.56 43.73 pyrene, 1,
    3-dimethyl-
    0.58 54.28 3-indolizineacetamide,
    N-(2-hydroxyethyl)-.
    alpha.-oxo-2-phenyl-
    3.72 56.82
    31 fluoranthene 0.51 49.97 pyrene, 1,
    3-dimethyl-
    0.66 54.83 pyridine, 3,
    4-diphenyl-
    0.52 58.54
    32 pyrene 0.56 51.60 8-isopropyl-1,
    3-dimethylphenanthrene
    0.51 55.59 2-(2, 4, 6-
    cycloheptatrienylidene)1, 3-indandione
    0.91 59.33
    33 3-phenanthrol 1.53 52.69 2-(2, 4, 6-
    cycloheptatrienylidene)
    -1, 3-indandione
    0.87 56.44 ethanone, 1-[4-
    (2-phenylethenyl)phenyl]-
    0.99 59.78
    34 retene 0.97 54.95 2-(2, 4, 6-
    cycloheptatrienylidene)
    -1, 3-indandione
    0.94 57.21 indeno[2, 1-a]
    indene-5, 10-dione,
    4b, 9b-dihydro-
    1.39 60.37
    35 1-phenyl-1
    H-inden-4-ol
    0.76 56.18 benz[a]anthracene 2.03 57.36 phenol, 2, 2'-
    methylenebis[6-(1, 1-
    dimethylethyl)-4-methyl-
    0.52 60.80
    36 pyrene, 1, 2, 3, 6, 7,
    8-hexahydro-
    0.96 56.82 triphenylene 1.56 57.64 2-(2, 4, 6-
    cycloheptatrienylidene)
    -1, 3-indandione
    2.28 61.13
    37 1-phenyl-1H-
    inden-4-ol
    0.94 57.01 benz[a]anthracene,
    7-methyl-
    1.23 60.74 benz[a]
    anthracene
    1.28 61.31
    38 1H-Indole-3-
    carboxaldehyde,
    2-phenyl-
    1.04 57.12 8, 9-dihydro-7H-
    cyclopenta[a]pyrene
    0.69 61.00 triphenylene 1.11 61.59
    39 3, 7-diamino-5H-dibenzo
    a, d]cycloheptene
    0.82 59.91 1-heptacosanol 0.73 61.41 indeno[2, 1-a]
    indene-5, 10-dione,
    4b, 9b-dihydro-
    0.57 61.69
    40 indeno[2, 1-a]
    indene-5, 10-dione,
    4b, 9b-dihydro-
    0.79 60.65 benz[e]
    acephenanthrylene
    1.66 65.34 quinoline,
    4-styryl-
    1.85 62.29
    41 1, 2, 3, 4, 5, 6-
    hexahydrochrysene
    0.65 61.49 1-heptacosanol 0.54 66.25 5(4H)-
    thebenidinone
    1.07 64.21
    42 2-methylbenzo[b]naphtha
    [2, 1-d]thiophene
    0.59 63.90 dinaphtho
    [1, 2-b:1', 2'-d]furan
    0.93 66.88 chrysene,
    5-methyl-
    0.93 64.70
    43 1-pyrenemethanol 0.86 64.77 perylene 1.06 67.07 benz[a]anthracene,
    12-methyl-
    0.51 64.97
    44 benz[e]
    acephenanthrylene
    0.75 69.46 benz[e]
    acephenanthrylene
    1.58 67.39 11H-indeno[1, 2-b]
    quinoline, 2-hydroxy-
    0.56 67.38
    45 benzo[a]pyren-7(8H)
    -one, 9, 10-dihydro-
    0.67 75.55 8H-indeno[2, 1-b]
    phenanthrene
    1.17 69.24 benz[e]
    acephenanthrylene
    1.75 69.29
    46 indeno[1, 2, 3-cd]
    pyrene
    0.51 79.83 benz[j]aceanthrylene,
    3-methyl-
    0.52 70.32 dinaphtho
    [1, 2-b:1', 2'-d]furan
    0.72 70.84
    47 indeno
    [1, 2, 3-cd]pyrene
    0.61 74.30 perylene 1.48 71.04
    48 indeno[1, 2, 3-cd]
    pyrene
    0.78 75.64 benz[e]
    acephenanthrylene
    1.52 71.33
    49 13H-dibenzo[a, h]
    fluorene
    1.03 73.18
    50 Benz[j]aceanthrylene,
    3-methyl-
    0.58 74.27
    51 9, 10-anthracenedione, 1,
    3, 8-trihydroxy-6-methyl-
    1.56 75.11
    52 indeno[1, 2, 3-cd]
    pyrene
    0.84 78.26
    53 benzo[ghi]
    perylene
    1.76 79.61
    54 benzo[ghi]
    perylene, 4-methyl-
    0.58 83.01
    55 perylo[1, 12-b, c, d]
    pyranone
    0.82 83.24
    56 perylo[1, 12-b, c, d]
    pyranone
    0.58 83.78
    下载: 导出CSV

    表  4  TS-H-CT与HI-TS-P中不同苯环数酚类和芳烃类物质的含量

    Table  4  Content of various phenols and aromatics in TS-H-CT and HI-TS-P

    1 ring 2 rings 3 rings 4 rings 5 rings 6 rings
    TS-H-CT phenols /% 25.55 20.73 1.88 0.90 0.24 -
    aromatic
    hydrocarbons /%
    4.86 4.25 3.83 5.45 2.81 1.17
    HI-TS-P phenols /% 1.08 6.09 1.49 - - -
    aromatic
    hydrocarbons /%
    12.48 1.37 11.52 14.98 4.29 3.27
    下载: 导出CSV

    表  5  H-CT、P及TI-QS组分的TG与DTG分析

    Table  5  Analysis TG and DTG curves of H-CT, P and TI-QS

    Sample H-CT P TI-QS-H-CT TI-QS-P
    Stages
    Initial weight loss
    Temperature t/℃
    55 95 161 89 202 91 195 262 112 273
    Final weight loss
    Temperature t/℃
    95 161 521 202 731 195 262 656 273 755
    Peak temperature t/℃ 76 135 298 167 337 154 233 285 199 406
    Stage weight loss w/% 1.20 5.12 79.16 4.01 57.61 11.83 10.22 32.70 10.09 37.70
    Carbonization yield w/% 12.71 37.71 42.65 51.50
    下载: 导出CSV
  • [1] TANG W, FANG M X, WANG H Y, YU P L, WANG Q H, LUO Z Y. Mild hydrotreatment of low temperature coal tar distillate:Product composition[J]. Chem Eng J, 2014, 236(2):529-537. doi: 10.1007/s11144-016-1068-8
    [2] 顾全文.低温干馏煤焦油回收工艺改进[J].山西化工, 2013, 33(2):58-60. https://www.wenkuxiazai.com/doc/505c96af770bf78a652954c8.html

    GU Quan-wen.The method to improve coal tar recovery of low-temperature carbonization[J]. Shanxi Chem Ind, 2013, 33(2):58-60. https://www.wenkuxiazai.com/doc/505c96af770bf78a652954c8.html
    [3] LONG H Y, SHI Q, PAN N, ZHANG Y H, CUI D C, CHUNG K H, ZHAO S Q, XU C M. Characterization of middle-temperature gasification coal tar. Part 2:Neutral fraction by extrography followed by gas chromatography-mass spectrometry and electrospray ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry[J]. Energy Fuels, 2012, 26(6):3424-3431. doi: 10.1021/ef2020167
    [4] NIU M L, SUN X H, GAO R, LI D, CUI W G, LI W H. Effect of dephenolization on low temperature coal tar hydrogenation to produce fuel oil[J]. Energy Fuels, 2016, 30(12):10215-10221. doi: 10.1021/acs.energyfuels.6b01985
    [5] SEKI H, KUMATA F. Structural change of petroleum asphaltenes and resins by hydrodemetallization[J]. Energy Fuels, 2000, 14(5):980-985. doi: 10.1021/ef000009m
    [6] SEKI H, YOSHIMOTO M. Deactivation of HDS catalyst in two-stage RDS process:Ⅱ. Effect of crude oil and deactivation mechanism[J]. Fuel Process Technol, 2001, 69(3):229-238. doi: 10.1016/S0378-3820(00)00143-0
    [7] MORGAN T J, GEORGE A, ÁLVAREZ P, MILLAN M, HEROD A A, KANDIYOTI R. Characterization of molecular mass ranges of two coal tar distillate fractions (creosote and anthracene oils) and aromatic standards by LD-MS, GC-MS, probe-MS and size-exclusion chromatography[J]. Energy Fuels, 2008, 22(5):3275-3292. doi: 10.1021/ef800333v
    [8] CRISTADORO A, KULKARNI S U, BURGESS W A, CERVO E G, RADER H J, MULLEN K, BRUCE D A, THIES M C. Structural characterization of the oligomeric constituents of petroleum pitches[J]. Carbon, 2009, 47(10):2358-2370. doi: 10.1016/j.carbon.2009.04.027
    [9] BURGESS W A, PITTMAN J J, MARCUS R K, THIES M C. Structural identification of the monomeric constituents of petroleum pitch[J]. Energy Fuels, 2010, 24(8):4301-4311. doi: 10.1021/ef1002556
    [10] GEORGE A, MORGAN T J, ALVAREZ P, MILLAN M, HEROD A A, KANDIYOTI R. Fractionation of a coal tar pitch by ultra-filtration, and characterization by size exclusion chromatography, UV-fluorescence and laser desorption-mass spectroscopy[J]. Fuel, 2010, 89(10):2953-2970. doi: 10.1016/j.fuel.2010.04.011
    [11] SHI Q, PAN N, LONG H Y, CUI D C, GUO X F, LONG Y H, CHUNG K H, ZHAO S Q, XU C M, HSU C S. Characterization of middle-temperature gasification coal tar. Part 3:Molecular composition of acidic compounds[J]. Energy Fuels, 2012, 27(1):108-117. https://www.sciencedirect.com/science/article/pii/S1004954116308849
    [12] SUN M, CHEN J, DAI X M, ZHAO X L, LIU K, MA X X. Controlled separation of low temperature coal tar based on solvent extraction-column chromatography[J]. Fuel Process Technol, 2015, 136(0):41-49. http://or.nsfc.gov.cn/bitstream/00001903-5/193311/1/1000013444255.pdf
    [13] YAO T, ZONG Z M, WEN Z, MUKASA R. Separation of arenols from a high-temperature coal tar[J]. Int J Min Sci Technol, 2012, 22(2):243-244. doi: 10.1016/j.ijmst.2011.09.002
    [14] TAO L, ZHAO G B, QIAN J, QIN Y K. TG-FTIR characterization of pyrolysis of waste mixtures of paint and tar slag[J]. J Hazard Mater, 2010, 175(1):754-761. https://www.sciencedirect.com/science/article/pii/S0304389409017245
    [15] GIROUX L, CHARLAND J P, MACPHEE J A. Application of thermogravimetric Fourier transform infrared spectroscopy (TG-FTIR) to the analysis of oxygen functional groups in coal[J]. Energy Fuels, 2006, 20(5):1988-1996. doi: 10.1021/ef0600917
    [16] SUN M, MA X X, YAO Q X, WANG R C, MA Y X, FENG G, SHANG J X, XU L, YANG Y H. GC-MS and TG-FTIR study of petroleum ether extract and residue from low temperature coal tar[J]. Energy Fuels, 2011, 25(3):1140-1145. doi: 10.1021/ef101610z
    [17] CRESPO J L, ARENILLAS A, VINA J A, GARCIA R, SNAPE C E, MOINELO S R. A study of mesophase formation from a low temperature coal tar pitch using formaldehyde as a promoter for polymerisation[J]. Carbon, 2004, 42(12):2762-2765. doi: 10.1007/s11631-013-0630-6
    [18] CRESPO J L, ARENILLAS A, VINA J A, GARCIA R, SNAPE C E, MOINELO S R. Effect of the polymerization with formaldehyde on the thermal reactivity of a low-temperature coal tar pitch[J]. Energy Fuels, 2005, 19(2):374-381. doi: 10.1021/ef0498768
    [19] 杭继虎, 高冬梅, 彭浩, 吴金丽, 张福强.焦油沥青基COPNA树脂的合成研究[J].化工新型材料, 2012, 40(11):32-33. doi: 10.3969/j.issn.1006-3536.2012.11.012

    HANG Ji-hu, GAO Dong-mei, PENG Hao, WU Jin-li, ZHANG Fu-qiang. Study on composition of COPNA resin based on tar asphalt[J]. New Chem Mater, 2012, 40(11):32-34. doi: 10.3969/j.issn.1006-3536.2012.11.012
    [20] SUN M, Ma X X, LV B, DAI X M, YAO Y, LIU Y Y, HE M, ZHAO X L. Gradient separation of -300℃ distillate from low-temperature coal tar based on formaldehyde reactions[J]. Fuel, 2015, 160:16-23. doi: 10.1016/j.fuel.2015.07.029
    [21] SUN M, Ma X X, CAO W, DU P P, YANG Y H, XU L. Effect of polymerization with paraformaldehyde on thermal reactivity of >300℃ fraction from low temperature coal tar[J]. Thermochim Acta, 2012, 538:48-54. doi: 10.1016/j.tca.2012.03.015
    [22] SONG H J, LIU G R, ZHANG J Z, WU J H. Pyrolysis characteristics and kinetics of low rank coals by TG-FTIR method[J]. Fuel Process Technol, 2017, 156:454-460. doi: 10.1016/j.fuproc.2016.10.008
    [23] LIU J X, JIANG X M, SHEN J, ZHANG H. Pyrolysis of superfine pulverized coal. Part 1. Mechanisms of methane formation[J]. Energy Convers Manage, 2014, 87:1027-1038. doi: 10.1016/j.enconman.2014.07.053
    [24] WANG K, DU F, WANG G D. The influence of methane and CO2 adsorption on the functional groups of coals:Insights from a Fourier transform infrared investigation[J]. J Nat Gas Sci Eng, 2017, 45:358-367. doi: 10.1016/j.jngse.2017.06.003
    [25] ARENILLAS A, RUBIERA F, PIS J J, CUESTA M J, IGLESIAS M J, JIMENEZ A, SUAREZ-RUIZ I. Thermal behaviour during the pyrolysis of low rank perhydrous coals[J]. J Anal Appl Pyrolysis, 2003, 68:371-385. https://www.sciencedirect.com/science/article/pii/S0165237003000317
    [26] LIEVENS C, YPERMAN J, CORNELISSEN T, CARLEER R. Study of the potential valorisation of heavy metal contaminated biomass via phytoremediation by fast pyrolysis:Part Ⅱ:Characterisation of the liquid and gaseous fraction as a function of the temperature[J]. Fuel, 2008, 87(10):1906-1916. https://www.sciencedirect.com/science/article/pii/S0016236107004620
    [27] JIA Y B, HUANG J J, WANG Y. Effects of calcium oxide on the cracking of coal tar in the freeboard of a fluidized bed[J]. Energy Fuels, 2004, 18(6):1625-1632. doi: 10.1021/ef034077v
    [28] JIANG H Y, WANG J G, WU S Q, YUAN Z Q, HU Z L, WU R M, LIU Q L. The pyrolysis mechanism of phenol formaldehyde resin[J]. Polym Degrad Stab, 2012, 97(8):1527-1533. doi: 10.1016/j.polymdegradstab.2012.04.016
    [29] CAO G P, CHEN W J, LIU X B. Synthesis and thermal properties of the thermosetting resin based on cyano functionalized benzoxazine[J]. Polym Degrad Stab, 2008, 93(3):739-744. doi: 10.1016/j.polymdegradstab.2007.10.002
    [30] GENG W H, NAKAJIMA T, TAKANASHI H, OHKI A. Analysis of carboxyl group in coal and coal aromaticity by Fourier transform infrared (FT-IR) spectrometry[J]. Fuel, 2009, 88(1):139-144. doi: 10.1016/j.fuel.2008.07.027
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  134
  • HTML全文浏览量:  76
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-22
  • 修回日期:  2017-11-01
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-01-10

目录

    /

    返回文章
    返回