留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矿化垃圾衍生燃料热解过程HCl与H2S析出规律

林均衡 杨文申 阴秀丽 吴创之

林均衡, 杨文申, 阴秀丽, 吴创之. 矿化垃圾衍生燃料热解过程HCl与H2S析出规律[J]. 燃料化学学报(中英文), 2018, 46(2): 152-160.
引用本文: 林均衡, 杨文申, 阴秀丽, 吴创之. 矿化垃圾衍生燃料热解过程HCl与H2S析出规律[J]. 燃料化学学报(中英文), 2018, 46(2): 152-160.
LIN Jun-heng, YANG Wen-shen, YIN Xiu-li, WU Chuang-zhi. Release of HCl and H2S during pyrolysis of aged refuse derived-fuels[J]. Journal of Fuel Chemistry and Technology, 2018, 46(2): 152-160.
Citation: LIN Jun-heng, YANG Wen-shen, YIN Xiu-li, WU Chuang-zhi. Release of HCl and H2S during pyrolysis of aged refuse derived-fuels[J]. Journal of Fuel Chemistry and Technology, 2018, 46(2): 152-160.

矿化垃圾衍生燃料热解过程HCl与H2S析出规律

基金项目: 

国家重点研发计划 2016YFE0203300

广东省自然科学基金 2017B030308002

广州市科技计划项目 201707010242

详细信息
  • 中图分类号: X705

Release of HCl and H2S during pyrolysis of aged refuse derived-fuels

Funds: 

the National Key R&D Program of China 2016YFE0203300

the Guangdong Natural Science Foundation 2017B030308002

the Science and Technology Program of Guangzhou 201707010242

More Information
  • 摘要: 采用热重红外质谱联用法(TG-FTIR-MS)和水平管式热解炉/化学吸收法,对比研究了矿化垃圾(ARDF)和常规垃圾(NRDF)衍生燃料热解过程腐蚀性气体(HCl和H2S)的析出特性,分析了热解温度及热解类型对析出行为的影响并对热解固相产物腐蚀性元素的赋存特点进行了考察。结果表明,慢速热解过程,两者腐蚀性气体的析出特征温度区间相似,均分为两段,HCl析出区间为200-400和420-500 ℃,H2S析出区间为230-370和380-670 ℃,而ARDF表现为较低的HCl和H2S析出率;快速热解过程,两者腐蚀性气体的析出受热解温度影响较大,且规律有所差别:随热解温度的升高,HCl析出率呈S型变化(先高后低再高),而H2S析出率呈正相关,均在850 ℃达到峰值,其中,HCl析出率分别为48.8%(ARDF)和29.4%(NRDF),H2S析出率分别为6.8%(ARDF)和44.6%(NRDF)。因腐蚀性气体差异性的析出规律,两类垃圾热解固相产物腐蚀性元素的赋存与热解温度相关,ARDF的Cl和S元素最高赋存率分别可达59.4%(450 ℃)和84.3%(750 ℃),而NRDF的Cl和S元素最高赋存率分别仅为36.7%(850 ℃)和15.2%(650 ℃)。说明在合适的热解条件下,相比NRDF,ARDF腐蚀性元素不易释放,倾向于固相赋存,此为不同垃圾衍生燃料的热利用提供了一定依据和参考。
  • 图  1  ARDF(a)和NRDF(b)样品的照片

    Figure  1  Pictures of ARDF(a) and NRDF(b)

    图  2  快速热解实验装置示意图

    Figure  2  Schematic diagram of rapid pyrolysis system

    图  3  ARDF(a)和NRDF(b)的TG和DTG曲线

    Figure  3  TG and DTG curves of ARDF(a) and NRDF(b)

    图  4  ARDF(a)和NRDF(b)慢速热解过程中HCl随温度的析出曲线

    Figure  4  Evolution profiles of HCl throughout ARDF (a) and NRDF (b) pyrolysis

    图  5  ARDF(a)、NRDF(b)慢速热过程中H2S随温度的析出曲线

    Figure  5  Evolution profiles of H2S throughout ARDF (a) and NRDF (b) pyrolysis

    图  6  ARDF(a)、NRDF(b)在快速热解过程中HCl析出率和固相中Cl含量随热解温度的变化

    Figure  6  Conversion of HCl-Cl and solid-Cl from ARDF (a) and NRDF (b) during rapid pyrolysis process at different temperatures

    图  7  ARDF(a)、NRDF(b)在快速热解过程中H2S析出率和固相中S含量随热解温度的变化

    Figure  7  Conversion of H2S-S (a) and Solid-S (b) from ARDF and NRDF during rapid pyrolysis process at different temperatures

    表  1  ARDF和NRDF的元素分析与工业分析

    Table  1  Ultimate and proximate analysis of ARDF and NRDF

    Sample Ultimate analysis wdb*/% Proximate analysis wdb*/%
    C H N O** total
    S
    inorganic
    S
    total
    Cl
    inorganic
    Cl
    A V FC
    ARDF 35.95 2.56 0.85 18.29 0.65 0.103 0.95 0.46 41.68 40.75 17.57
    NRDF 57.26 6.23 0.87 22.64 0.15 0.007 1.37 0.14 11.48 75.96 12.56
    *: dried basis;**: calculated by difference
    下载: 导出CSV

    表  2  ARDF和NRDF的HCl红外吸收峰峰面积及HCl相对析出率计算值RHCl

    Table  2  Absorbance area of HCl and RHCl of HCl from ARDF and NRDF

    Sample Area of
    peak A
    Area of
    peak B
    Result
    of RHCl
    ARDF 0.6632 0.4344 115.5
    NRDF 2.973 0.7283 270.2
    下载: 导出CSV

    表  3  ARDF及NRDF的H2S离子吸收峰峰面积及H2S相对析出率计算值RH2S

    Table  3  Ion current area of H2S and RH2S of ARDF and NRDF

    Sample Area of
    peak A
    / 1×10-11
    Area of
    peak B
    / 1×10-11
    Result of
    RH2S
    / 1×10-9
    ARDF 0.861 0.316 1.811
    NRDF 1.276 1.792 20.453
    下载: 导出CSV
  • [1] "十三五"全国城镇生活垃圾无害化处理设施建设规划[R]. 北京: 国家发展改革委住房城乡建设部, 2016.

    "The 13th Five-Year Plan" construction planning for harmless treatment facilities of national municipal wastes[R]. Beijing: Ministry of Housing and Urban-Rural Development of the People's Republic of China, 2016.
    [2] 李华, 赵由才.填埋场稳定化垃圾的开采、利用及填埋场土地利用分析[J].环境卫生工程, 2000, 8(2):56-57+61. https://www.wenkuxiazai.com/doc/4d54630dcc175527072208b6.html

    LI Hua, ZHAO You-cai. The exploitation of stabilizing solid waste and the utilization analysis for the land of landfill site[J]. Environ Sanit Eng, 2000, 8(2):56-57+61. https://www.wenkuxiazai.com/doc/4d54630dcc175527072208b6.html
    [3] 赵由才, 柴晓利, 牛冬杰.矿化垃圾基本特性研究[J].同济大学学报(自然科学版), 2006, 34(10):1360-1364. doi: 10.3321/j.issn:0253-374X.2006.10.017

    ZHAO You-cai, CHAI Xiao-li, NIU Dong-jie. Characteristics of aged refuse in closed refuse landfill in Shanghai[J]. J Tongji Univ (Nat Sci), 2006, 34(10):1360-1364. doi: 10.3321/j.issn:0253-374X.2006.10.017
    [4] ZHAO Y C, WANG L C, HUA R H, XU D M, GU G W. A comparison of refuse attenuation in laboratory and field scale lysimeters[J]. Waste Manage, 2002, 22(1):29-35. doi: 10.1016/S0956-053X(01)00028-9
    [5] COMMISSION E. Council Directive 99/31/EC of 26 April 1999 on the landfill of waste (Landfill Directive)[EB]. 1999.
    [6] BOSMANS A, VANDERREYDT I, GEYSEN D, HELSEN L. The crucial role of Waste-to-Energy technologies in enhanced landfill mining:a technology review[J]. J Clean Prod, 2013, 55(14):10-23. https://www.researchgate.net/publication/271615996_The_crucial_role_of_Waste-to-Energy_technologies_in_enhanced_landfill_mining_A_technology_review
    [7] ROTHEUT M, QUICKER P. Energetic utilisation of refuse derived fuels from landfill mining[J]. Waste Manage, 2017, 62:101-117. doi: 10.1016/j.wasman.2017.02.002
    [8] CHALERMCHAROENRAT S, LAOHALIDANOND K, KERDSUWAN S. Optimization of combustion behavior and producer gas quality from reclaimed landfill through highly densify RDF-gasification[J]. Energy Procedia, 2015, 79:321-326. https://www.sciencedirect.com/science/article/pii/S1876610215022286
    [9] KAEWPENGKROW P, ATONG D, SRICHAROENCHAIKUL V. Pyrolysis and gasification of landfilled plastic wastes with Ni-Mg-La/Al2O3 catalyst[J]. Environ Technol, 2012, 33(22/24):2489-2495. https://www.researchgate.net/publication/235727392_Pyrolysis_and_gasification_of_landfilled_plastic_wastes_with_Ni-Mg-LaAl2O3_catalyst
    [10] 袁浩然, 鲁涛, 熊祖鸿, 黄宏宇, 小林敬幸, 陈勇, 黎志强.城市生活垃圾热解气化技术研究进展[J].化工进展, 2012, 31(2):421-427. http://www.hgjz.com.cn/CN/abstract/abstract11827.shtml

    YUAN Hao-ran, LU Tao, XIONG Zu-hong, HUANG Hong-yu, KOBAYASHI Noriyuki, CHEN Yong, LI Zhi-qiang. Advance in pyrolysis and gasification of municipal solid waste study[J]. Chem Ind Eng Prog, 2012, 31(2):421-427. http://www.hgjz.com.cn/CN/abstract/abstract11827.shtml
    [11] PAN T J, GESMUNDO F, NIU Y. Corrosion behavior of three iron-based model alloys in reducing atmospheres containing HCl and H2S at 600℃[J]. Corros Sci, 2007, 49(3):1362-1377. doi: 10.1016/j.corsci.2006.06.014
    [12] HU H, FANG Y, LIU H, YU R, LUO G, LIU W, LI A, YAO H. The fate of sulfur during rapid pyrolysis of scrap tires[J]. Chemosphere, 2014, 97(1):102-107. https://www.sciencedirect.com/science/article/pii/S0045653513014380
    [13] YUAN G, CHEN D, YIN L, WANG Z, ZHAO L, WANG J Y. High efficiency chlorine removal from polyvinyl chloride (PVC) pyrolysis with a gas-liquid fluidized bed reactor[J]. Waste Manage, 2014, 34(6):1045-1050. doi: 10.1016/j.wasman.2013.08.021
    [14] ZHU H M, JIANG X G, YAN J H, CHI Y, CEN K F. TG-FTIR analysis of PVC thermal degradation and HCl removal[J]. J Anal Appl Pyrolysis, 2008, 82(1):1-9. https://www.sciencedirect.com/science/article/pii/S0165237007001623
    [15] LANE D J, VAN EYK P J, ASHMAN P J, KWONG C W, DE NYS R, ROBERTS D A, COLE A J, LEWIS D M. Release of Cl, S, P, K, and Na during thermal conversion of algal biomass[J]. Energy Fuels, 2015, 29(4):2542-2554. doi: 10.1021/acs.energyfuels.5b00279
    [16] WILLIAMS E A, WILLIAMS P T. The pyrolysis of individual plastics and a plastic mixture in a fixed bed reactor[J]. J Chem Technol Biot, 1997, 70(1):9-20. doi: 10.1002/(ISSN)1097-4660
    [17] YU J, SUN L, MA C, QIAO Y, YAO H. Thermal degradation of PVC:A review[J]. Waste Manage, 2016, 48:300-314. doi: 10.1016/j.wasman.2015.11.041
    [18] ZHOU H, WU C, ONWUDILI J A, MENG A, ZHANG Y, WILLIAMS P T. Influence of process conditions on the formation of 2-4 ring polycyclic aromatic hydrocarbons from the pyrolysis of polyvinyl chloride[J]. Fuel Process Technol, 2016, 144(Supplement C):299-304. https://www.sciencedirect.com/science/article/pii/S037838201630011X
    [19] MENG N, JIANG D, LIU Y, GAO Z, CAO Y, ZHANG J, GU J, HAN Y. Sulfur transformation in coal during supercritical water gasification[J]. Fuel, 2016, 186:394-404. doi: 10.1016/j.fuel.2016.08.097
    [20] XU L, YANG J L, LI Y M, LIU Z Y. Behavior of organic sulfur model compounds in pyrolysis under coal-like environment[J]. Fuel Process Technol, 2004, 85(8/10):1013-1024. https://www.sciencedirect.com/science/article/pii/S0378382003003011
    [21] 阮松宾.广西县级城镇生活垃圾处理方式和工艺探讨[J].环境卫生工程, 2008, 16(1):27-30. http://d.old.wanfangdata.com.cn/Periodical/hjwsgc200801008

    RUAN Song-bin. Discussion about means and process of country towns domestic waste treatment in Guangxi[J]. Environ Sanit Eng, 2008, 16(1):27-30. http://d.old.wanfangdata.com.cn/Periodical/hjwsgc200801008
    [22] SINGH S, WU C, WILLIAMS P T. Pyrolysis of waste materials using TGA-MS and TGA-FTIR as complementary characterisation techniques[J]. J Anal Appl Pyrolysis, 2012, 94:99-107. doi: 10.1016/j.jaap.2011.11.011
    [23] HOTOV G, SLOV K V. Quantitative TG-MS analysis of evolved gases during the thermal decomposition of carbon containing solids[J]. Thermochim Acta, 2016, 632(Supplement C):23-28. https://www.sciencedirect.com/science/article/pii/S0040603115002282
    [24] GUO X E, YANG X L, LI H, WU C Z, CHEN Y, LI F, XIE K C. Release of hydrogen chloride from combustibles in municipal solid waste[J]. Environ Sci Technol, 2001, 35(10):2001-2005. doi: 10.1021/es991208r
    [25] 钱小青, 牛东杰, 楼紫阳, 赵由才.填埋场矿化垃圾资源综合利用研究进展[J].环境卫生工程, 2006, 14(2):62-64. http://www.docin.com/p-6197017.html

    QIAN Xiao-qing, NIU Dong-jie, LOU Zi-yang, ZHAO You-cai. Development of resource comprehensive application study on mineralized waste in landfill Site[J]. Environ Sanit Eng, 2006, 14(2):62-64. http://www.docin.com/p-6197017.html
    [26] S RUM L, GR NLI M G, HUSTAD J E. Pyrolysis characteristics and kinetics of municipal solid wastes[J]. Fuel, 2001, 80(9):1217-1227. https://www.sciencedirect.com/science/article/pii/S0016236100002180
    [27] WANG X, SI J, TAN H, MA L, POURKASHANIAN M, XU T. Nitrogen, sulfur, and chlorine transformations during the pyrolysis of straw[J]. Energy Fuels, 2010, 24(9):5215-5221. doi: 10.1021/ef1007215
    [28] EFIKA E C, ONWUDILI J A, WILLIAMS P T. Products from the high temperature pyrolysis of RDF at slow and rapid heating rates[J]. J Anal Appl Pyrolysis, 2015, 112(Supplement C):14-22. https://www.sciencedirect.com/science/article/pii/S0165237015000054
    [29] 杜胜磊, 陈汉平, 杨海平, 胥广富, 王贤华, 张世红.生物质热解过程中F和Cl的迁徙行为研究[J].中国电机工程学报, 2010, 30(14):115-120.

    DU Sheng-Lei, CHEN Hai-ping, XU Guang-fu, WNAG Xian-hua, ZHANG Shi-hong. Transformation behavior of F and Cl during biomass pyrolysis[J]. Proc CSEE, 2010, 30(14):115-120.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  132
  • HTML全文浏览量:  46
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-19
  • 修回日期:  2018-01-09
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-02-10

目录

    /

    返回文章
    返回