留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤系针状焦煅烧过程中焦炭微晶结构的演变规律

程俊霞 朱亚明 高丽娟 赵雪飞

程俊霞, 朱亚明, 高丽娟, 赵雪飞. 煤系针状焦煅烧过程中焦炭微晶结构的演变规律[J]. 燃料化学学报(中英文), 2020, 48(9): 1071-1078.
引用本文: 程俊霞, 朱亚明, 高丽娟, 赵雪飞. 煤系针状焦煅烧过程中焦炭微晶结构的演变规律[J]. 燃料化学学报(中英文), 2020, 48(9): 1071-1078.
CHENG Jun-xia, ZHU Ya-ming, GAO Li-juan, ZHAO Xue-fei. Evolution of coke microcrystalline structure during calcination process of coal-based needle coke[J]. Journal of Fuel Chemistry and Technology, 2020, 48(9): 1071-1078.
Citation: CHENG Jun-xia, ZHU Ya-ming, GAO Li-juan, ZHAO Xue-fei. Evolution of coke microcrystalline structure during calcination process of coal-based needle coke[J]. Journal of Fuel Chemistry and Technology, 2020, 48(9): 1071-1078.

煤系针状焦煅烧过程中焦炭微晶结构的演变规律

基金项目: 

国家自然科学基金 U1361126

辽宁省自然科学基金 20180551218

辽宁省教育厅项目 2017LNQN04

辽宁科技大学优秀人才培养项目 2018RC07

辽宁科技大学青年基金 2016QN25

辽宁科技大学青年基金 2017QN06

辽宁科技大学开放基金资助 USTLKFSY201701

详细信息
    通讯作者:

    赵雪飞, E-mail:zhao_xuefei@sohu.com

  • 中图分类号: TQ52

Evolution of coke microcrystalline structure during calcination process of coal-based needle coke

Funds: 

The project was supported by the National Natural Science Foundation of China U1361126

Natural Science Foundation of Liaoning Province 20180551218

Liaoning Provincial Department of Education Project 2017LNQN04

Excellent Talent Training Project of University of Science and Technology Liaoning 2018RC07

Youth Fund of University of Science and Technology Liaoning 2016QN25

Youth Fund of University of Science and Technology Liaoning 2017QN06

Open Fund of University of Science and Technology Liaoning USTLKFSY201701

More Information
  • 摘要: 以煤系针状焦的生焦为原料,在2和5℃/min的升温速率下进行煅烧,采用FT-IR、XRD、Raman光谱等分析手段研究煅烧过程中针状焦微晶结构的演变规律。结果表明,随着煅烧温度的升高,针状焦中碳微晶的直径La、炭微晶的高度Lc、晶体中的片层含量N以及每层中平均碳原子数n、趋于规整的石墨微晶含量Ig逐渐升高。但是受挥发分逸出和生焦收缩的影响,Lc出现了明显的"拐点"。新增片层与原有片层间存在的随机"层错",导致层间距d002的波动。相同温度下升温速率越快,晶格尺寸越小,片层含量N及每层平均碳原子数n越少,Lc出现"拐点"的温度越靠后。理想石墨微晶含量(IG/Iall)随温度的升高逐渐增加;而具有缺陷的石墨微晶间在煅烧过程中不断相互转化,最终发育为理想石墨微晶。碳网平面上C-C键平均键长α则随着煅烧温度的升高明显增加。
  • 图  1  针状焦在不同温度下的煅烧收率

    Figure  1  Yield of needle cokes after calcination at different temperatures

    图  2  针状焦的红外光谱谱图

    Figure  2  FT-IR spectra of needle cokes (a): 2 ℃/min; (b): 5 ℃/min

    图  3  (a) 原料生焦2800-3000 cm-1分子结构分析(b)针状焦的红外结构参数

    Figure  3  (a) Structure analysis of a green needle coke in 2800-3000 cm-1 interval, (b) FT-IR structural parameters of needle cokes

    图  4  针状焦的XRD谱图

    Figure  4  XRD spectra of needle coke

    (a): 2 ℃/min; (b): 5 ℃/min; (c): NC-2-700 002 peak-fitting spectra; (d): NC-5-700 002 peak-fitting spectra

    图  5  针状焦的Raman谱图

    Figure  5  Raman spectra of needle coke

    (a): 2 ℃/min; (b): 5 ℃/min; (c): curve-fitted Raman spectra of NC-2-700; (d): curve-fitted Raman spectra of NC-5-700

    表  1  针状焦的基本性质

    Table  1  Basic properties analysis of green needle coke

    Sample Ash/% Volatile /% True density /(g·cm-3) Ultimate analysis /% (mass composition)
    C H O N S
    Green needle coke 0.02 5.7 1.41 93.63 2.98 2.29 0.91 0.18
    下载: 导出CSV

    表  2  针状焦XRD参数计算

    Table  2  Calculation of XRD parameters of needle cokes

    Sample d002 /nm Lc/nm La/nm Ig/ % N n
    NC-2-700 0.351 1.86 4.09 66.64 6 12
    NC-2-800 0.351 2.22 4.27 70.26 7 17
    NC-2-900 0.347 2.03 4.65 75.48 7 15
    NC-2-1000 0.348 2.45 4.65 81.61 8 21
    NC-2-1100 0.342 2.58 4.87 84.12 9 23
    NC-2-1200 0.340 2.74 4.88 86.66 9 26
    NC-5-700 0.353 1.75 3.80 62.85 6 11
    NC-5-800 0.355 2.05 4.04 66.56 7 15
    NC-5-900 0.349 2.20 4.29 71.60 7 17
    NC-5-1000 0.351 2.15 4.41 75.83 7 17
    NC-5-1100 0.342 2.48 4.45 81.09 8 22
    NC-5-1200 0.342 2.70 4.81 83.28 9 25
    下载: 导出CSV

    表  3  Raman各参数计算

    Table  3  Calculation results of Raman parameters

    Sample ID1/Iall/ % ID2/Iall/ % ID3/Iall/ % ID4/Iall/ % IG/Iall/ % α/pm
    NC-2-700 53.90 6.02 8.69 7.47 23.92 141.27
    NC-2-800 45.45 6.36 10.15 13.41 24.63 141.29
    NC-2-900 49.34 6.54 8.44 10.65 25.03 141.38
    NC-2-1000 45.74 6.58 11.63 10.96 25.09 141.39
    NC-2-1100 41.69 5.66 10.10 16.58 25.97 141.40
    NC-2-1200 50.07 6.21 8.62 8.87 26.23 141.72
    NC-5-700 50.93 7.09 8.33 10.52 23.13 141.22
    NC-5-800 45.44 5.85 14.51 10.52 23.67 141.25
    NC-5-900 43.36 7.65 10.77 13.95 24.27 141.37
    NC-5-1000 40.05 7.04 14.96 13.91 24.04 141.37
    NC-5-1100 41.86 6.05 11.67 15.07 25.34 141.41
    NC-5-1200 44.64 6.98 11.83 10.63 25.91 141.48
    下载: 导出CSV
  • [1] TAMAS U, GUBICZA J, GABOR R, JENÖ G, CRISTIAN P. Microstructure of carbon blacks determined by X-ray diffraction profile analysis[J]. Carbon, 2002, 40(6):929-937. doi: 10.1016/S0008-6223(01)00224-X
    [2] MARTINS M A, OLIVEIRA L S, FRANCE A S. Modeling and simulation of petroleum coke calcination in rotary kilns[J]. Fuel, 2001, 80(11):1611-1622. doi: 10.1016/S0016-2361(01)00032-1
    [3] XIAO J, HUANG J, ZhONG Q, ZHANG H L, LI J. Modeling and simulation of petroleum coke calcination in pot calciner using two-fluid model[J]. J Metals, 2016, 68(2):643-655. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fcab9140c1f8dfcc41057f45ef7739ec
    [4] KAKUTA M, TSUCHIYA N, TANAKA H, NOGUCHI K. Structural changes during graphitization of petroleum coke[J]. Carbon, 1984, 22(2):237. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=J-STAGE_3769322
    [5] WALLOUCH R W, FAIR F V. Kinetics of the coke shrinkage process during calcinations[J]. Carbon, 1980, 13:147-153. doi: 10.1016/0008-6223(80)90023-8
    [6] RHEDEY P J, NADKARNI S K. Coker feedstock characteristics and calcined coke properties[J]. J Metals, 2013, 36(5):22-25. doi: 10.1007/BF03338449
    [7] HEINTA E A. Effect of calcination rate on petroleum coke properties[J]. Carbon, 1995, 33(6):817-820. doi: 10.1016/0008-6223(95)00002-U
    [8] 角田三尚, 高力雅人, 蔡学敏.石油焦在煅烧阶段中的结构变化(研究报告之一)-关于焦炭的结构、组织、比重的热处理变化研究[J].炭素技术, 1983, (2):16-20. http://www.cnki.com.cn/Article/CJFDTotal-TSJS198302004.htm

    MITSUNAO K, YOSHIHARU O, CAI Xue-min. Structural changes during calcination of petroleum coke (Part 1)-Research on the heat treatment changes of coke's structure, organization and specific gravity[J]. Carbon Technol, 1983, (2):16-20. http://www.cnki.com.cn/Article/CJFDTotal-TSJS198302004.htm
    [9] SACHSSE H. Encyclopaedia of Chemical Technolog[M]. NewYork:Ohn Wiley and Sons, 1990.
    [10] RAGAN S, MATSH H. Effects of calcination upon properties of needle-cokes[J]. J Mater Sci, 1983, 12(18):3695-3705. doi: 10.1007/BF00540742
    [11] 胡建宏, 煤焦油沥青精制机制及针状焦制备的基础研究[D].北京: 中国矿业大学, 2019.

    HU Jian-hong, Fundamental study on coal tar pitch refining and preparation of needle coke[D]. Beijing: China University of Minning & Tachnology, 2019.
    [12] ISMAGILOV Z R, SOZINOV S A, POPOVA A N, ZAPOTIN V P. Structural analysis of needle coke[J]. Coke Chem, 2019, 62(4):135-142. doi: 10.3103/S1068364X19040021
    [13] SAOWADEE N, AGERSTED K, BOWEN J R. Lattice constant measurement from electron backscatter diffraction patterns[J]. J Microsc, 2017, 266(2):200-210. doi: 10.1111/jmi.12529
    [14] ZENOU V Y, SNEJANA B. Microstructural analysis of undoped and moderately Sc-doped TiO2, anatase nanoparticles using Scherrer equation and Debye function analysis[J]. Mater Charact, 2018, 144:287-296. doi: 10.1016/j.matchar.2018.07.022
    [15] SARKAR A, DASGUPTA K, BARAT P, MUKHERJEE P, SATHIYAMOORTHY D. Studies on neon irradiated amorphous carbon using X-ray diffraction technique[J]. Int J Mod Phys B, 2008, 22(7):865-875. doi: 10.1142/S0217979208038119
    [16] BALACHANDRAN M. Study of stacking structure of amorphous carbon by X-ray diffraction technique[J]. Int J Electrochem Sci, 2012, 7(4):3127-3134. doi: 10.1016/j.jpowsour.2012.01.007
    [17] MANOJ B. Investigation of nanocrystalline structure in selected carbonaceous materials[J]. Int J Min Met Mater, 2014, 21(9):940-946. doi: 10.1007/s12613-014-0993-7
    [18] 刘冬冬, 高继慧, 吴少华, 秦裕琨.热解过程煤焦微观结构变化的XRD和Raman表征[J].哈尔滨工业大学学报, 2016, 48(7):39-45. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hebgydxxb201607006

    LIU Dong-dong, GAO Ji-hui, WU Shao-hua, QIN Yu-kun. XRD and Raman characterization of microstructure changes of char during pyrolysis[J]. J Harbin Inst Technol, 2016, 48(7):39-45. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hebgydxxb201607006
    [19] HAN W H, CAI Y X, LI X H, WANG J, WANG J, LI K, WEI X. Raman spectroscopy analysis of carbon structural evolution of diesel particulate matters with the treatment of nonthermal plasma[J]. Spectrosc Spect Anal, 2012, 32(32):2152-2156. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201208028
    [20] DEWA K, ONO K, MATSUKAWA Y, TAKAHASHI K, SAITO Y, MATSUSHITA Y AOKI H, ERA K, AOKI T, YAMAGUCHI T. Determining the structure of carbon black using Raman spectroscopy and X-ray diffraction[J]. Carbon, 2017, 114(4):132-138. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=J-STAGE_3638943
    [21] 夏训松.石油焦煅烧工艺研究[D].长沙: 中南大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10533-1012478702.htm

    XIA Song-xun. Research on petroleum coke calcining process[D]. Changsha: Central South University, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10533-1012478702.htm
    [22] 曹嘉慧, 申峻, 王玉高, 刘刚, 李瑞丰, 徐青柏.石油沥青与煤焦油沥青混溶反应前后可析出多环芳烃含量的变化[J].石油化工, 2019, 48(7):702-708. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syhg201907008

    CAO Jia-hui, SHEN Jun, WANG Yu-gao, LIU Gang, LI Rui-feng, XU Qing-bai. Changes in leachable content of polycyclic aromatic hydrocarbons before and after mixing petroleum pitch with coal tar pitch[J]. Petrochem Technol, 2019, 48(7):702-708. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syhg201907008
    [23] LIN D, QIU P, XIE X, ZHAO Y. Chemical structure and pyrolysis characteristics of demineralized Zhundong coal[J]. Energy Source, 2017, 27:1-6. doi: 10.1080/15567036.2017.1403504
    [24] 刘琬玥, 刘钦甫, 刘霖松, 刘迪.沁水盆地北部中高煤阶煤结构的FTIR特征研究[J].煤炭科学技术, 2019, 47(2):186-192. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtkxjs201902030

    LIU Wan-yue, LIU Qin-pu, LIU Lin-song, LIU Di. Study on FT-IR features of middle and high rank coal structure in north part of Qinshui Basin[J]. Coal Sci Technol, 2019, 47(2):186-192. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtkxjs201902030
    [25] SAIKIA B K, BORUAH R K, GOGOI P K. FT-IR and XRD analysis of coal from Makum coalfield of Assam[J]. J Earth Syst Sci, 2007, 116(6):575-579. doi: 10.1007/s12040-007-0052-0
    [26] POLITIS T G, NAZEM F F, 范有志.针状焦煅烧机理[J].炭素技术, 1992, (3):23-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000003139734

    POLITIS T G, NAZEM F F, FAN You-zhi. The calcination mechanism of needle coke[J]. Carbon Technol, 1992, (3):23-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000003139734
    [27] WHITTAKER M P, MILLER F C, FRITZ H C. Structural changes accompanying coke calcinations[J]. Ind Eng Chem Prod Res Dev, 1970, 9(2):187-190. doi: 10.1021/i360034a014
    [28] KIM J D, ROH J S, KIM M S. Effect of carbonization temperature on crystalline structure and properties of isotropic pitch-based carbon fiber[J]. Carbon Lett, 2017, 21:51-60. doi: 10.5714/CL.2017.21.051
    [29] SHI H, REMIMERS N, DAHN J R. Structure-refinement program for disordered carbons[J]. J Appl Crystallogr, 1993, 26:827-836. doi: 10.1107/S0021889893003784
    [30] SHI H. Disordered carbons and battery applications[D]. Burnaby: Simon Frasier University, 1993.
    [31] IWASHITA N, INAGAKI M. Relations between structural parameters obtained by X-Ray powder diffraction of various carbon materials[J]. Carbon, 1993, 31(7):1107-1113. doi: 10.1016/0008-6223(93)90063-G
    [32] NAKAMIZO M, KAMMERECK R, WALKER P L. Laser raman studies on carbons[J]. Carbon, 1974, 12(3):259-267. doi: 10.1016/0008-6223(74)90068-2
    [33] GUPTA A K, RUISSIN T J, GUTIE H R, EKLUND P C. Probing grapheneedgesr, viar, Raman scattering[J]. ACS Nano, 2009, 3(1):45-52.
    [34] 陈师, 石彦平, 吴琪琳. PAN原丝在预氧化及碳化石墨化过程中微观结构的变化研究[J].化工新型材料, 2016, 44(5):121-123. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxxcl201605039

    CHEN Shi, SHI Yan-ping, WU Qi-lin. Microstructual evolution during preoxidation, carbonization and graphitization of PAN fiber[J]. New Chem Mater, 2016, 44(5):121-123. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxxcl201605039
    [35] GRAF D, MOLITOR F, ENSSLIN K. Spatially resolved Raman spectroscopy of single -and Few-Layer Graphene[J]. Nano Lett, 2007, 7(2):238-242. doi: 10.1021/nl061702a
    [36] FITZER E. Some remarks on Raman spectroscopy of carbon structures[J]. High Temp High Press, 1988, 20:449-454.
    [37] 华中, 王月梅, 肖利, 秦政坤, 范继文. PAN基炭纤维中sp2杂化的C-C原子键距与结构参数之间关系[J].新型炭材料, 2005, 20(3):274-277 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xxtcl200503015

    HUA Zhong, WANG Yue-mei, XIAO Li, QIN Zheng-kun, FAN Wen-ji. Relations beltween hybrid C-C bond length and structure parameters of PAN-based carbon fibers[J]. New Chem Mater, 2005, 20(3):274-277. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xxtcl200503015
    [38] 石彦平.拉曼光谱研究碳纤维的微观结构和性能[D].上海: 东华大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10255-1011071959.htm

    SHI Yan-ping. Raman spectroscopy to study the microstructure and properties of carbon fiber[D]. Shanghai: Donghua University, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10255-1011071959.htm
    [39] KO T H. Raman spectrum of modified PAN-based carbon fibers during graphitization[J]. J Appl Polym Sci, 1996, 59(4):577-580. doi: 10.1002/(SICI)1097-4628(19960124)59:4<577::AID-APP2>3.0.CO;2-Q
    [40] BU H, ZHAO M, WANG A, WANG X First-principles prediction of the transition from graphdiyne to a superlattice of carbon nanotubes and graphenenanoribbons[J]. Carbon, 2013, 65:341-348. doi: 10.1016/j.carbon.2013.08.035
    [41] 沈曾民.新型炭材料[M].北京:化学工业出版社, 2003.

    SHEN Zeng-min. New Carbon Materials[M]. Beijing: Chemical Industry Press, 2003.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  398
  • HTML全文浏览量:  123
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-21
  • 修回日期:  2020-08-25
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-09-10

目录

    /

    返回文章
    返回