留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

溶剂特性对淖毛湖煤加氢液化中间产物反应行为的影响

方正美 吕海燕 张媛媛 宁奕飞 潘铁英 张德祥

方正美, 吕海燕, 张媛媛, 宁奕飞, 潘铁英, 张德祥. 溶剂特性对淖毛湖煤加氢液化中间产物反应行为的影响[J]. 燃料化学学报(中英文), 2019, 47(8): 907-914.
引用本文: 方正美, 吕海燕, 张媛媛, 宁奕飞, 潘铁英, 张德祥. 溶剂特性对淖毛湖煤加氢液化中间产物反应行为的影响[J]. 燃料化学学报(中英文), 2019, 47(8): 907-914.
FANG Zheng-mei, LÜ Hai-yan, ZHANG Yuan-yuan, NING Yi-fei, PAN Tie-ying, ZHANG De-xiang. Effect of solvent characteristics on reaction behavior of hydroliquefaction intermediate products from Naomaohu coal[J]. Journal of Fuel Chemistry and Technology, 2019, 47(8): 907-914.
Citation: FANG Zheng-mei, LÜ Hai-yan, ZHANG Yuan-yuan, NING Yi-fei, PAN Tie-ying, ZHANG De-xiang. Effect of solvent characteristics on reaction behavior of hydroliquefaction intermediate products from Naomaohu coal[J]. Journal of Fuel Chemistry and Technology, 2019, 47(8): 907-914.

溶剂特性对淖毛湖煤加氢液化中间产物反应行为的影响

基金项目: 

国家重点研发计划项目 2016YFB0600303

详细信息
  • 中图分类号: TQ529.1

Effect of solvent characteristics on reaction behavior of hydroliquefaction intermediate products from Naomaohu coal

Funds: 

the National Key Research and Development Program of China 2016YFB0600303

More Information
    Corresponding author: ZHANG De-xiang, Tel: 021-64252367, E-mail: zdx@ecust.edu.cn
  • 摘要: 为探究溶剂特性对煤加氢液化中间产物反应行为的影响,以新疆淖毛湖煤作为原料,四氢萘、循环溶剂及十氢萘作为供氢溶剂,在高压搅拌釜中进行直接加氢液化实验,并运用电子顺磁共振手段分析了中间产物-沥青质的自由基浓度的变化。结果表明,四氢萘溶剂中沥青质随反应温度的升高在大量生成的同时又被转化,产率从290℃的12.92%到350℃的最大34.13%再到430℃的15.98%;循环溶剂中沥青质产率先持续上升,290℃即有31.89%,400℃达到最大47.96%,之后由于结焦反应降低至33.90%。十氢萘溶剂中沥青质产率变化趋势与四氢萘一致。三种溶剂中沥青质自由基浓度的变化趋势相同,均在350℃达到最大值,分别是1.778×1018、2.323×1018和1.930×1018/g,整体上看循环溶剂数值要高于四氢萘,十氢萘介于两者之间。而四氢萘及循环溶剂中沥青质的g值在2.00323-2.00403,变化趋势与液化气体产物中COx含量变化相吻合。
  • 图  1  煤直接液化产物的分离流程示意图

    Figure  1  Schematic diagram of separation process of coal direct liquefaction products

    图  2  不同溶剂中煤加氢液化总转化率随温度的变化

    Figure  2  Change of total conversion of coal hydroliquefaction with temperature in different solvents

    图  3  不同溶剂中煤加氢液化沥青质产率随温度的变化

    Figure  3  Change of PAA yield of coal hydroliquefaction with temperature in different solvents

    图  4  不同溶剂中煤加氢液化油产率随温度的变化

    Figure  4  Change of oil yield of coal hydroliquefaction with temperature in different solvents

    图  5  不同溶剂中煤加氢液化气产率随温度的变化

    Figure  5  Change of gas yield of coal hydroliquefaction with temperature in different solvents

    图  6  不同溶剂中煤加氢液化沥青质g值随温度的变化

    Figure  6  Change of g value of PAAs of coal hydroliquefaction in different solvents

    图  7  四氢萘溶剂液化气体组分分析

    Figure  7  Analysis of gas components in tetralin

    图  8  循环溶剂液化气体产物中CO、CO2含量随温度的变化

    Figure  8  Changes of CO and CO2 of gas products in recycle solvent

    表  1  NMH煤的工业分析及元素分析

    Table  1  Proximate and ultimate analyses of NMH coal

    Sample Rank Proximate analysisw/% Ultimate analysis wdaf/% H/C
    (mol ratio)
    Mad Ad Vdaf FCdaf C H O* N St
    NMH coal lignite 15.08 5.12 52.28 47.72 73.52 5.68 19.60 0.96 0.24 0.93
    *: by difference
    下载: 导出CSV

    表  2  循环溶剂组分分析

    Table  2  Component analysis of recycle solvent

    No. Compound Proportion/% No. Compound Proportion/%
    1 pyrene 17.83 9 pyrene, 1-methyl- 3.95
    2 4, 5-dihydropyrene 7.83 10 1, 2, 3, 5, 6, 7-hexahydro-4,
    8-dimethyl-s-indacene
    2.37
    3 pyrene, 1, 2, 3, 3a, 4, 5-hexahydro- 5.37 11 naphthalene, 6-butyl-1, 2, 3, 4-tetrahydro- 2.31
    4 pyrene, 1, 2, 3, 6, 7, 8-hexahydro- 5.07 12 3, 3′-dimethylbiphenyl 2.22
    5 anthracene, 1, 2, 3, 4, 5, 6, 7, 8-octahydro- 4.72 13 1H-Indene, 4, 7-dimethyl- 2.18
    6 pyrene, hexadecahydro- 4.68 14 trans-anti-trans-perhydroanthracene 2.14
    7 naphthalene, 1-(2-propenyl)- 4.64 15 nonadecane 2.10
    8 heptadecane 4.37 16 others 28.22
    下载: 导出CSV

    表  3  沥青质EPR测试的实验参数

    Table  3  Experimental parameters of EPR of PAA

    Parameter Numerical value Parameter Numerical value
    Test temperature 298K scanning width 100G
    Microwave frequency (9.8±10 -8)GHz time constant 5.12ms
    Microwave power 4mW scanning time 20.97s
    Modulation amplitude 1G modulation frequency 100kHz
    Central magnetic field (3510±10 -6)G
    下载: 导出CSV

    表  4  不同溶剂中煤加氢液化沥青质的自由基浓度(Ng)

    Table  4  Free radical concentration(Ng) of PAAs of coal hydroliquefaction in different solvents

    Temperaturet/℃ 290 350 380 400 430
    Ng/(×1018·g-1) tetralin 1.143 1.778 1.402 1.213 1.198
    recycle solvent 1.840 2.323 2.012 1.892 1.827
    decalin 1.637 1.930 1.729
    下载: 导出CSV
  • [1] 郭薇.新疆淖毛湖矿区煤田地质特征及可采煤层对比研究[J].环球人文地理, 2016, (24):90. doi: 10.3969/j.issn.2095-0446.2016.24.069

    GUO Wei. Study on the geological characteristics and the comparison of coal seams in the coal field of Naomohu in xinjiang[J]. Geol Sur, 2016, (24):90. doi: 10.3969/j.issn.2095-0446.2016.24.069
    [2] 赵正威, 李聪聪, 包志洪, 魏云迅.新疆淖毛湖矿区1号煤层煤质特征及清洁利用方向[J].中国煤炭地质, 2018, 30(9):1-4. doi: 10.3969/j.issn.1674-1803.2018.09.01

    ZHAO Zheng-wei, LI Cong-cong, BAO Zhi-hong, WEI Yun-xun. Coal quality features and clean utilization irientation of coal No.1 in nom nur mine area, Xinjiang[J]. Coal Geol China, 2018, 30(9):1-4. doi: 10.3969/j.issn.1674-1803.2018.09.01
    [3] 高晋生, 张德祥.煤液化技术[M].北京:化学工业出版社, 2005:130-162.

    GAO Jin-sheng, ZHANG De-xiang. Coal Liquefaction Technology[M]. Beijing:Chemical Industry Press, 2005:130-162.
    [4] 周扬, 张媛媛, 陈丽诗, 潘铁英, 张德祥.两种西部煤的化学结构及加氢液化性能[J].煤炭转化, 2017, 40(6):1-6. doi: 10.3969/j.issn.1004-4248.2017.06.001

    ZHOU Yang, ZHANG Yuan-yuan, CHEN Li-shi, PAN Tie-ying, ZHANG De-xiang. Chemical structure and hydrogenation liquefaction performance of two kinds of western coal[J]. Coal Convers, 2017, 40(6):1-6. doi: 10.3969/j.issn.1004-4248.2017.06.001
    [5] SIMSEK E H, GULEC F, KAVUSTU H. Application of Kalman filter to determination of coal liquefaction mechanisms using discrete time models[J]. Fuel, 2017, 207:814-820. doi: 10.1016/j.fuel.2017.06.004
    [6] 赵鹏, 李军芳, 吴艳, 毛学锋, 张晓静, 常秋连.复杂多相体系煤加氢液化反应与氢传递的研究[J].燃料化学学报, 2018, 46(12):1423-1429. doi: 10.3969/j.issn.0253-2409.2018.12.002

    ZHAO Peng, LI Jun-fang, WU Yan, MAO Xue-feng, ZHANG Xiao-jing, CHANG Qiu-lian. Reaction and hydrogen transfer in complex multi-phase system during coal hydro-liquefaction[J]. J Fuel Chem Technol, 2018, 46(12):1423-1429. doi: 10.3969/j.issn.0253-2409.2018.12.002
    [7] 罗化峰, 凌开成, 张卫帅, 王顺华, 冯伟, 申峻.氢气在无催化煤液化中的反应机理[J].煤炭转化, 2011, 34(4):20-24. doi: 10.3969/j.issn.1004-4248.2011.04.006

    LUO Hua-feng, LING Kai-cheng, ZHANG Wei-shuai, WANG Shun-hua, FENG Wei, SHEN Jun. Reaction mechanism of hydrogen for direct coal liquefaction without catalysts[J]. Coal Convers, 2011, 34(4):20-24. doi: 10.3969/j.issn.1004-4248.2011.04.006
    [8] NIU B, JIN L J, LI Y, SHI Z W, HU H Q. Isotope analysis for understanding the hydrogen transfer mechanism in direct liquefaction of Bulianta coal[J]. Fuel, 2017, 203:82-89. doi: 10.1016/j.fuel.2017.04.079
    [9] 李刚, 凌开成.煤高温快速液化影响因素的研究[J].燃料化学学报, 2009, 37(6):648-653. doi: 10.3969/j.issn.0253-2409.2009.06.002

    LI Gang, LING Kai-cheng. Influencing factors on quick coal liquefaction at high temperature[J]. J Fuel Chem Technol, 2009, 37(6):648-653. doi: 10.3969/j.issn.0253-2409.2009.06.002
    [10] 宁奕飞, 张媛媛, 周扬, 陈丽诗, 潘铁英, 张德祥.反应时间对淖毛湖煤加氢液化中间产物自由基浓度影响研究[J].燃料化学学报, 2018, 46(11):1281-1287. doi: 10.3969/j.issn.0253-2409.2018.11.001

    NING Yi-fei, ZHANG Yuan-yuan, ZHOU Yang, CHEN Li-shi, PAN Tie-ying, ZHANG De-xiang. Effect of reaction time on free radical concentration in hydrogenation liquefaction of Naomaohu coal[J]. J Fuel Chem Technol, 2018, 46(11):1281-1287. doi: 10.3969/j.issn.0253-2409.2018.11.001
    [11] 陈茺, 许学敏, 高晋生.煤中前沥青烯与沥青烯性质的研究[J].华东理工大学学报, 1998, (1):31-34. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800239570

    CHEN Chong, XU Xue-min, GAO Jin-sheng. Nature of preasphaltene and asphaltene in coal[J]. J East Chin Univ Sci Technol, 1998, (1):31-34. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800239570
    [12] MALHOTRA V M, BUCKMASTER H A. 9 and 34 GHz EPR study of the free radicals in various asphaltenes:statistical correlation of the g-values with heteroatom content[J]. Org Geochem, 1985, 8(4):235-239. doi: 10.1016/0146-6380(85)90001-4
    [13] MICHAEL G, AL-SIRI M, KHAN Z H, ALI F A. Differences in average chemical structures of asphaltene fractions separated from feed and product oils of a mild thermal processing reaction[J]. Energy Fuels, 2005, 19(4):1598-1605. doi: 10.1021/ef049854l
    [14] 王知彩, 陈恩生, 潘春秀, 任世彪, 雷智平, 水恒福.胜利褐煤液化沥青烯光谱表征[J].燃料化学学报, 2014, 42(6):656-661. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18425.shtml

    WANG Zhi-cai, CHEN En-sheng, PAN Chun-xiu, REN Shi-biao, LEI Zhi-ping, SHUI Heng-fu. Spectral characterization of asphaltene from direct liquefaction of Shengli lignite[J]. J Fuel Chem Technol, 2014, 42(6):656-661. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18425.shtml
    [15] 薛永兵, 凌开成.溶剂对煤液化影响的研究[J].燃料化学学报, 2012, 40(11):1295-1299. doi: 10.3969/j.issn.0253-2409.2012.11.003

    XUE Yong-bing, LING Kai-cheng. Effect of solvent on direct coal liquefaction[J]. J Fuel Chem Technol, 2012, 40(11):1295-1299. doi: 10.3969/j.issn.0253-2409.2012.11.003
    [16] 刘沐鑫.煤直接液化过程中溶剂的作用规律及煤裂解自由基的行为研究[D].北京: 中国科学院大学, 2015.

    LIU Mu-xin. The solvent action in liquefaction of coal and pyrolysis free radical behavior of coal[D]. Beijing: University of Chinese Academy of Sciences, 2015.
    [17] 廉鹏飞.若干潜在煤直接液化溶剂特征及对煤的辅助液化作用[D].北京: 中国科学院大学, 2017.

    LIAN Peng-fei. Study on characteristics of some potential coal liquefaction solvents and their effect on coal liquefaction[D]. Beijing: University of Chinese Academy of Sciences, 2017.
    [18] SAKATA R, TAKAYAMA A, SAKANISHI K, MOCHIDA I. Roles of nondonor solvent in the hydrogen-transferring liquefaction of Australian brown coal[J]. Energy Fuels, 1990, 4(5):585-588. doi: 10.1021/ef00023a030
    [19] RUDNICK L R, TUETING D. Investigation of free radicals produced during coal liquefaction using ESR[J]. Fuel, 1984, 63(2):153-157. doi: 10.1016/0016-2361(84)90028-0
    [20] DUBER S, WIECCKOWSKI A B. Effects of organic solvents on the EPR spectrum of coal[J]. Fuel, 1984, 63(12):1641-1644. doi: 10.1016/0016-2361(84)90092-9
    [21] 郑榕萍. EPR定量测定煤中自由基的方法及煤液化机理的研究[D].上海: 华东理工大学, 2011.

    ZHENG Rong-ping. Research on quantitative determination of free radicals in coal by EPR and coal liquefaction mechanism[D]. Shanghai: East China University of Science and Technology, 2011.
    [22] 张德祥, 高晋生, 朱之培.年青煤在石油重油中加氢液化的研究[J].华东理工大学学报, 1986, (3):46-55. http://www.cnki.com.cn/Article/CJFDTOTAL-HLDX198603005.htm

    ZHANG De-xiang, GAO Jin-sheng, ZHU Zhi-pei. The liquefaction of some Chinese low rank coals by hydrogenation in various heavy oils of petroleum[J]. J East Chin Univ Sci Technol, 1986, (3):46-55. http://www.cnki.com.cn/Article/CJFDTOTAL-HLDX198603005.htm
    [23] 刘瑞民, 夏伟平, 张德祥, 郑榕萍, 潘铁英.溶剂供氢能力对褐煤加氢及其液化产物中自由基含量的影响[C]//2010中国新型煤化工发展及示范项目进展论坛论文集.上海: 华东理工大学, 2010: 228-235.

    LIU Rui-min, XIA Wei-ping, ZHANG De-xiang, ZHENG Rong-ping, PAN Tie-ying. Coal liquefaction and the free racicals concentration of liquefied with the different capabitity of hydrogen-donor[C]//Papers collection of 2010 forum on development and demonstration projects of new coal chemical industry in China. Shanghai: East China University of Science and Technology, 2010: 228-235.
    [24] 郑榕萍, 潘铁英, 史新梅, 周丽芳, 刘瑞民, 张德祥, 高晋生.标准曲线法测定煤中自由基含量[J].波谱学杂志, 2011, 28(2):259-264. doi: 10.3969/j.issn.1000-4556.2011.02.010

    ZHENG Rong-ping, PAN Tie-ying, SHI Xin-mei, ZHOU Li-fang, LIU Rui-min, ZHANG De-xiang, GAO Jin-sheng. Quantitative determination of free radical content in coal by standard curve method[J]. J Mag Res, 2011, 28(2):259-264. doi: 10.3969/j.issn.1000-4556.2011.02.010
    [25] 刘国根, 邱冠周.煤的ESR波谱研究[J].波谱学杂志, 1999, 16(2):177-180. doi: 10.3969/j.issn.1000-4556.1999.02.016

    LIU Guo-gen, QIU Guan-zhou. A study on ESR spectrum of coal[J]. J Mag Res, 1999, 16(2):177-180. doi: 10.3969/j.issn.1000-4556.1999.02.016
    [26] 舒歌平, 史士东, 李克健.煤炭液化技术[M].北京:煤炭工业出版社, 2003:91-94.

    SHU Ge-ping, SHI Shi-dong, LI Ke-jian. Coal Liquefaction Technology[M]. Beijing:China Coal Industry Publishing House, 2003:91-94.
    [27] 牛犇.煤直接液化中溶剂的作用及氢传递机理[D].大连: 大连理工大学, 2017.

    NIU Ben. Role of solvents and hydrogen transfer mechanism in direct coal liquefaction[D]. Dalian: Dalian University of Technology, 2017.
    [28] NIU B, JIN L J, LI Y, SHI Z W, YAN H X, HU H Q. Interaction between hydrogen-donor and nondonor solvents in direct liquefaction of bulianta coal[J]. Energy Fuels, 2016, 30(12):10260-10267. doi: 10.1021/acs.energyfuels.6b02223
    [29] 陈丽诗.煤及加氢液化中间产物结构解析与分子模型构建[D].上海: 华东理工大学, 2018.

    CHEN Li-shi. Structure analysis and molecular model construction of coal and its intermediate products derived from coal hydroliquefaction[D]. Shanghai: East China University of Science and Technology, 2018.
    [30] PETRAKIS L, GRANDY D W. Electron spin resonance spectrometric study of free radicals in coals[J]. Anal Chem, 1978, 50(2):303-308. doi: 10.1021/ac50024a034
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  145
  • HTML全文浏览量:  60
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-23
  • 修回日期:  2019-06-17
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-08-10

目录

    /

    返回文章
    返回