留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米多孔型碳基铂铜合金薄膜催化剂的结构及析氢性能表征

赵之婧 杨滨 赵钰萌

赵之婧, 杨滨, 赵钰萌. 纳米多孔型碳基铂铜合金薄膜催化剂的结构及析氢性能表征[J]. 燃料化学学报(中英文), 2016, 44(4): 483-488.
引用本文: 赵之婧, 杨滨, 赵钰萌. 纳米多孔型碳基铂铜合金薄膜催化剂的结构及析氢性能表征[J]. 燃料化学学报(中英文), 2016, 44(4): 483-488.
ZHAO Zhi-jing, YANG Bin, ZHAO Yu-meng. Structure and hydrogen evolution performance of nano-porous PtCu/C membrane catalysts[J]. Journal of Fuel Chemistry and Technology, 2016, 44(4): 483-488.
Citation: ZHAO Zhi-jing, YANG Bin, ZHAO Yu-meng. Structure and hydrogen evolution performance of nano-porous PtCu/C membrane catalysts[J]. Journal of Fuel Chemistry and Technology, 2016, 44(4): 483-488.

纳米多孔型碳基铂铜合金薄膜催化剂的结构及析氢性能表征

基金项目: 

国家自然科学基金 51261012

昆明理工大学分析测试基金 20140292

详细信息
  • 中图分类号: TG146.3

Structure and hydrogen evolution performance of nano-porous PtCu/C membrane catalysts

More Information
  • 摘要: 采用离子束溅射(Ion Beam Sputtering, IBS)与Pt、Cu移动双靶技术,结合真空退火及酸蚀处理等后处理工艺,制备出PtCu/C薄膜催化剂。采用高分辨透射电镜(HRTEM & STEM)、原子力显微镜测试(AFM)、X射线衍射(XRD)测试薄膜催化剂的表面形貌及组织结构。通过循环伏安法(CV)和线性扫描伏安法(LSV)测试薄膜催化剂的电化学析氢性能。结果表明,经过真空退火(400 ℃保温1 h)及酸蚀处理(1 mol/L HNO3,50 ℃,120 h)后的薄膜催化剂出现类蜂窝状纳米多孔结构,其电化学析氢交换电流密度达到0.004 27 A/cm2,相较于未后处理样品的铂载量降低8.77%,催化性能提升20.62%。
  • 图  1  纯铂膜电极循环伏安曲线

    Figure  1  Cyclic voltammetry (CV) curves of Pt/C

    图  2  样品的析氢性能测试结果

    Figure  2  Cyclic voltammetry (CV) (a) and linear sweep voltammetry (LSV) (b) curves of various samples

    图  3  样品表面形貌的STEM照片

    Figure  3  STEM image of various samples (×215000)

    (a): sample a; (b): sample c; (c): sample d

    图  4  样品表面AFM检测的3-D形貌图

    Figure  4  AFM 3-D morphology of various samples

    (a): sample a; (b): sample d

    图  5  AFM检测的粒子计数柱状图

    Figure  5  AFM peak count distribution histogram for sample a (a) and sample d (b)

    图  6  样品a、d 的XRD谱图

    Figure  6  XRD patterns of sample a and d

    表  1  薄膜镀制参数

    Table  1  Parameters for Ion Beam Sputtering (IBS)

    Distance of movement d/mmTime t/sScreen voltageV/kVBeam currentI/mAAcceleration voltageV/kV
    Cleaning03000.870200
    Sputtering20-506002.670140
    下载: 导出CSV

    表  2  样品后处理参数

    Table  2  post-Processing conditions of samples

    SampleAnnealing temperature t/℃Etching time t/h
    a--
    b400-
    c-120
    d400120
    下载: 导出CSV

    表  3  样品a、d及Pt/C金属载量及i0

    Table  3  Metal loadings in the membrane and i0 values of various samples

    SamplePt/(mg·cm-2)Cu/(mg·cm-2)Pt/Cu(mol ratio)i0/(A·cm-2)
    a0.0570.0510.360.00354
    Pt/C0.138--0.00390
    d0.0520.0230.720.00427
    下载: 导出CSV

    表  4  AFM检测的高度参数

    Table  4  Height parameters for various samples

    SampleSq /nmSskSkuSp /nmSv /nmSz /nmSa /nm
    a0.521.049.146.542.078.610.40
    d10.900.142.7137.5030.8068.308.76
    下载: 导出CSV
  • [1] LI W Z, XIN Q, YAN Y S. Nanostructured Pt-Fe/C cathode catalysts for direct methanol fuel cell: The effect of catalyst composition[J]. Int J Hygrogen Energy, 2010, 35(6): 2530-2538. doi: 10.1016/j.ijhydene.2010.01.013
    [2] 贾羽洁, 蒋剑春, 孙康, 陆天虹. Pt/Au原子比对活性炭负载Au-Pt直接甲酸燃料电池阴极催化剂性能的影响[J]. 燃料化学学报, 2011, 39(10): 792-795. doi: 10.1016/S1872-5813(11)60046-7

    JIA Yu-jie, JIANG Jian-chun, SUN Kang, LU Tian-hong. Effect of Pt/Au atomic ratio in active-carbon-supported Au-Pt catalyst on its cathodic performance in direct formic acid fuel cells[J]. J Fuel Chem Technol, 2011, 39(10): 792-795. doi: 10.1016/S1872-5813(11)60046-7
    [3] JOO J, KIM P, KIM W, KIM Y, YI J. Effect of the preparation conditions of carbon-supported Pt catalyst on PEMFC performance[J]. J Appl Electrochem, 2009, 39(1): 135-140. doi: 10.1007/s10800-008-9645-9
    [4] 张熙贵, 王涛, 夏保佳, 钦佩, 徐乃欣. PEMFC氧电极的研究--助催化元素Ni和Co对Pt/C电催化剂性能的影响[J]. 燃料化学学报, 2003, 31(5): 411-414. http://rlhxxb.sxicc.ac.cn/CN/volumn/volumn_1232.shtml#

    ZHANG Xi-gui, WANG Tao, XIA Bao-jia, QIN Pei, XU Nai-xin. Study on oxygen electrode of PEMFC-effect of Ni, Co on properties of Pt/C electro-catalyst[J]. J Fuel Chem Technol, 2003, 31(5): 411-414. http://rlhxxb.sxicc.ac.cn/CN/volumn/volumn_1232.shtml#
    [5] 刘明义, 何源清, 毛宗强, 谢晓峰. 质子交换膜燃料电池阳极电催化剂CO中毒机理[J].电源技术, 2002, 26(z1): 247-249. http://www.cnki.com.cn/Article/CJFDTOTAL-DYJS2002S1016.htm

    LIU Ming-yi, HE Yuan-qin, MAO Zong-qiang, XIE Xiao-feng. CO-poisoning mechanism of anodic electrocatalyst in proton-exchange membrane fuel cell[J]. Chin J Power Sources, 2002, 26(z1): 247-249. http://www.cnki.com.cn/Article/CJFDTOTAL-DYJS2002S1016.htm
    [6] 徐云飞. 质子交换膜燃料电池Pt-Ru/C催化剂的研究[D]. 天津: 天津大学, 2007.

    XU Yun-fei, Study of Pt-Ru/C catalyst of proton-exchange membrane fuel cell[D]. Tianjing: Tianjing University, 2007.
    [7] 麻博远, 赵星. Pt-Ru二元合金催化剂CO"中毒"问题的理论研究[J]. 辽宁工业大学学报, 2008, 28(4): 274-277. http://www.cnki.com.cn/Article/CJFDTOTAL-LNGX200804017.htm

    MA Bo-yuan, ZHAO Xing. Theoretical study on CO poisoning of Pt-Ru catalysts[J]. J Liaoning Univ Technol, 2008, 28(4): 274-277. http://www.cnki.com.cn/Article/CJFDTOTAL-LNGX200804017.htm
    [8] 李莉, 王恒秀, 徐柏庆, 李晋鲁, 陆天虹, 毛宗强. PEMFC催化剂的研究:自制抗CO中毒Pt-Ru/C电催化剂的性质[J]. 化学学报, 2003, 61(6): 818-823. http://www.cnki.com.cn/Article/CJFDTOTAL-HXXB200306003.htm

    LI Li, WANG Heng-xiu, XU Bo-qing, LI Jin-lu, LU Tian-hong, MAO Zong-qiang. Study of PEMFC electro-catalysts: Characteristics of a homemade CO-tolerant Pt-Ru/C catalyst[J]. Acta Chim Sin, 2003, 61(6): 818-823. http://www.cnki.com.cn/Article/CJFDTOTAL-HXXB200306003.htm
    [9] WANG H, WANG R F, LI H, WANG Q F, KANG J, LEI Z Q. Facile synthesis of carbon-supported pseudo-core@shell PdCu@Pt nanoparticles for direct methanol fuel cells[J]. Int J Hydrogen Energy, 2011, 36(1): 839-848. doi: 10.1016/j.ijhydene.2010.09.033
    [10] ADILBISH G, LEE J W, JANG Y S, LEE H G, YU Y T. Preparation of Pt/C electrode with double catalyst layers by electrophoresis deposition method for PEMFC[J]. Int J Hydrogen Energy, 2014, 39(7): 3381-3386. doi: 10.1016/j.ijhydene.2013.11.044
    [11] MICHEAUD C, BAZIN D, GUERIN M, MARECOT P, BARBIER J. Study of supported bimetallic Pd-Pt catalysts characterization and catalytic activity for toluene hydrogenation[J]. React Kinet Catal Lett, 2000, 69(2): 209-216. doi: 10.1023/A:1005623127174
    [12] 徐丹, 贾丽华, 郭祥峰. Cu 掺杂对介孔 VOx-TiO2催化苯羟基化制苯酚的影响[J]. 催化学报, 2013, 34(2): 341-350. doi: 10.1016/S1872-2067(11)60487-7

    XU Dan, JIA Li-hua, GUO Xiang-feng. Cu-doped mesoporous VOx-TiO2 in catalytic hydroxylation of benzene to phenol[J]. Chin J Catal, 2013, 34(2): 341-350. doi: 10.1016/S1872-2067(11)60487-7
    [13] PODLOVCHENKO B I, MAKSIMOV Y M, MASLAKOV K I. Electrocatalytic properties of Au electrodes decorated with Pt submonolayers by galvanic displacement of copper adatoms[J]. Electrochim Acta, 2014, 130: 351-360. doi: 10.1016/j.electacta.2014.02.148
    [14] FENG L G, YANG J, HU Y, ZHU J B, LIU C P, XING W. Electrocatalytic properites of PdCeOx/C anodic catalyst for formic acid electrooxidation[J]. Int J Hydrogen Energy, 2012, 37: 4812-4818. doi: 10.1016/j.ijhydene.2011.12.114
    [15] LIAO M Y, WANG Y L, CHEN G Q, ZHOU H, LI Y H, ZHONG C J, CHEN B H. Reducing Pt use in the catalysts for formic acid electrooxidation via nanoengineered surface structure[J]. J Power Sources, 2014, 257: 45-51. doi: 10.1016/j.jpowsour.2014.01.103
    [16] HUANG N, YANG B, SHEN M Z, HAO X Y. Effects of acid treatment on the electrocatalysis properties of PtCuLaOx/C composite membrane materials[J]. Rare Met Mater Eng, 2013, 42(9): 1795-1799. doi: 10.1016/S1875-5372(14)60007-2
    [17] 张云洞, 刘洪祥. 离子束溅射沉积干涉光学薄膜技术[J].光电工程, 2001, 28(5): 69-72. http://www.cnki.com.cn/Article/CJFDTOTAL-GDGC200105018.htm

    ZHANG Yun-dong, LIU Hong-xiang. Production of optical coatings with ion beam sputter deposition technique[J]. Opto-Electron Eng, 2001, 28(5): 69-72. http://www.cnki.com.cn/Article/CJFDTOTAL-GDGC200105018.htm
    [18] FEDER R, FROST F, NEUMANN H, BUNDESMANN C, RAUSCHENBACH B. Systematic investigations of low energy Arion beam sputtering of Si and Ag[J]. Nucl Instrum Methods Phys Res, Sect B, 2013, 317: 137-142. doi: 10.1016/j.nimb.2013.01.056
    [19] LIANG X, WANG X, MIAO E L, ZHENG J J, WANG F, WANG G W, GU Y Q. An investigation on the removal characteristics of compound materials during ion beam sputtering using the Kinetic Monte Carlo method[J]. Nucl Instrum Methods Phys Res, Sect B, 2014, 323: 1-6. doi: 10.1016/j.nimb.2014.01.010
    [20] FUH Y K, WANG C H. In situ roughness monitoring of sputtered Pt thin film under dynamic turbulence using adaptive optics[J]. Optik, 2014, 25(9): 2086-2089. https://www.researchgate.net/publication/261763914_In_situ_roughness_monitoring_of_sputtered_Pt_thin_film_under_dynamic_turbulence_using_adaptive_optics
    [21] TAKASHI N, TAKUO N, TSUTOMU M, HIROSHI I. Effect of current density on electrochemical shape control of Pt nanoparticles[J]. Electrochim Acta, 2014, 129: 152-159. doi: 10.1016/j.electacta.2014.02.105
    [22] LI Y S, HAO F R, WANG Y H, ZHANG Y H, GE C W, LU T H. Facile synthesis of octahedral Pt-Pd nanoparticles stabilized by silsesquioxane for the electrooxidation of formic acid[J]. Electrochim Acta, 2014, 133: 302-307. doi: 10.1016/j.electacta.2014.04.030
    [23] 黄能. 后处理对铂基掺稀土氧化物薄膜电极催化性能的影响[D]. 昆明: 昆明理工大学, 2013.

    HUANG Neng. Effect of postprocessing on the catalytic performance of Pt based rare earth oxide thin film electrodes[D]. Kunming: Kunming University of Science and Technology, 2013.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  86
  • HTML全文浏览量:  38
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-17
  • 修回日期:  2016-01-31
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-04-30

目录

    /

    返回文章
    返回