留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CO在超临界水中的转化以及碱性钾盐的影响

丁启忠 张军 赵亮 陆柒安

丁启忠, 张军, 赵亮, 陆柒安. CO在超临界水中的转化以及碱性钾盐的影响[J]. 燃料化学学报(中英文), 2019, 47(8): 980-986.
引用本文: 丁启忠, 张军, 赵亮, 陆柒安. CO在超临界水中的转化以及碱性钾盐的影响[J]. 燃料化学学报(中英文), 2019, 47(8): 980-986.
DING Qi-zhong, ZHANG Jun, ZHAO Liang, LU Qi-an. Conversion of carbon monoxide in supercritical water and the influence of alkaline potassium salts[J]. Journal of Fuel Chemistry and Technology, 2019, 47(8): 980-986.
Citation: DING Qi-zhong, ZHANG Jun, ZHAO Liang, LU Qi-an. Conversion of carbon monoxide in supercritical water and the influence of alkaline potassium salts[J]. Journal of Fuel Chemistry and Technology, 2019, 47(8): 980-986.

CO在超临界水中的转化以及碱性钾盐的影响

基金项目: 

国家自然科学基金 51606103

能源高效清洁利用湖南省高校重点实验室开放基金项目 2017NGQ005

湖南省教育厅创新平台开放基金项目 17K002

详细信息
  • 中图分类号: TK6

Conversion of carbon monoxide in supercritical water and the influence of alkaline potassium salts

Funds: 

the National Natural Science Foundation of China 51606103

Open Fund of Key Laboratory of Efficient & Clean Energy Utilization of Hunan Provincial Education Department, China 2017NGQ005

Open Fund of Innovation Platform of Hunan Provincial Education Department, China 17K002

More Information
  • 摘要: 构建了CO高压溶解的进气系统,在连续式反应系统中对超临界水条件下CO的转化规律进行了研究;针对生物质超临界水气化中钾盐的多样性,选择KHCO3、K2CO3和KOH等三种钾盐成分,研究了它们在不同工艺条件(450-600℃、23-29 MPa、停留时间3-6 s)下对超临界水中水煤气转化过程的影响。结果表明,在无催化条件下,提高反应温度、延长停留时间均提高了CO的转化率,而压力对其影响在低压下(23-25 MPa)比较大,高压下(25-29 MPa)比较小,水煤气转化的反应动力学方程为k=103.75×exp(-0.66×105/RT)(s-1)。碱性钾盐均能显著提高CO转化率,其催化促进程度从大到小依次为:KHCO3>K2CO3>KOH。添加碱性钾盐时,提高反应温度、延长停留时间均提高CO转化率,而压力的影响比较复杂。碱性盐对水煤气转化反应的催化是通过草酸盐(HC2O4-)和甲酸盐(HCOO-)作为中间产物进行的。
  • 图  1  连续式超临界水反应系统示意图

    Figure  1  Schematic diagram of continuous supercritical water gasification system

    1: feedstock tank; 2: carbon monoxide saturator; 3: high pressure pump; 4: needle valve; 5: precooler; 6: cooling water; 7: reaction area; 8: high pressure ceramic tube; 9: electric stove wire; 10: K type thermocouple; 11: heat insulator; 12: post-cooler; 13: pressure gage; 14: 50 μ m filter; 15: 5 μ m filter; 16: back pressure valve; 17: gas collection; 18: gas-liquid separator

    图  2  压力对CO转化率的影响

    Figure  2  Conversion of CO under different pressures at 600 ℃ and CO/H2O (mol ratio) = 0.0006

    图  3  温度对CO转化率的影响

    Figure  3  Conversion of CO along with reaction time under different temperatures at 25 MPa and CO/H2O=0.0006 (mol ratio)

    图  4  甲酸根的液相产物分析结果谱图

    Figure  4  Ion chromatography spectra of formic acid at 450 ℃, 25 MPa, with a residence time of 6 s and CO/H2O (mol ratio)= 0.0006

    图  5  -ln(1-x)随反应时间的变化

    Figure  5  Plot of -ln(1-x) against residence time for the WGSR at 25 MPa and CO/H2O (mol ratio)=0.0006

    图  6  水气变换反应速率的阿伦尼乌斯图

    Figure  6  Arrhenius plot of rate constant for the noncatalytic WGSR in supercritical water

    图  7  不同温度时钾盐对CO转化率的影响

    Figure  7  Effect of potassium salts on the conversion of CO at 25 MPa and with a residence time of 6 s and CO/H2O (mol ratio) = 0.0006 450-600 ℃, [K+]=0.0015 mol/L

    图  8  不同压力时钾盐对CO转化率的影响

    Figure  8  Effect of potassium salts on the conversion of CO at 600 ℃ and with a residence time of 6 s and CO/H2O (mol ratio)= 0.0006 [K+]=0.0015 mol/L

    图  9  不同停留时间时钾盐对CO转化率的影响

    Figure  9  Effect of potassium salts on the conversion of CO at 600 ℃, 25 MPa and CO/H2O (mol ratio) = 0.0006 [K+]=0.0015 mol/L

  • [1] RATNASAMY C, WAGNER J P. Water gas shift catalysis[J]. Catal Rev, 2009, 51(3):325-440. http://d.old.wanfangdata.com.cn/Periodical/cuihuaxb201505010
    [2] MADENOĞLU T G, YILDIRIR E, SAĞLAM M, YÜKSEL M, BALLICE L. Improvement in hydrogen production from hard-shell nut residues by catalytic hydrothermal gasification[J]. J Supercrit Fluids, 2014, 95:339-347. doi: 10.1016/j.supflu.2014.09.033
    [3] MELIUS C F, BERGAN N E, SHEPHERD J E. Effect of water on combustion kinetics at high pressure[C]//Proceedings of the Twenty-Third Symposium (International) on Combustion. Pittsburgh: The Combustion Institute, 1990: 217-223. https://www.sciencedirect.com/science/article/pii/S0082078406802626
    [4] RICE S F, STEEPER R R, AIKEN J D. Water density effects on homogeneous water-gas shift reaction kinetics[J]. J Phys Chem A, 1998, 102(16):2673-2678. doi: 10.1021/jp972368x
    [5] SATO T, KUROSAWA S, SMITH JR R L, ADSCHIRI T, ARAI K. Water gas shift reaction kinetics under noncatalytic conditions in supercritical water[J]. J Supercrit Fluids, 2004, 29(1/2):113-119. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=447aea7aacf742d16a28944c2ffc8204
    [6] ARAKI K, FUJIWARA H, SUGIMOTO K, OSHIMA Y, KODA S. Kinetics of water-gas shift reaction in supercritical water[J]. J Chem Eng Jpn, 2004, 37(3):443-448. doi: 10.1252/jcej.37.443
    [7] 赵亮, 生物质中钾对生物质超临界水气化过程小分子中间产物转化影响研究[D].南京: 东南大学, 2013. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2627440

    ZHAO Liang. Study on effects of potassium existing in biomass on small molecule intermediates gasification conversion in supercritical water[D]. Nanjing: Southeast University, 2013. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2627440
    [8] ELLIOTT D C, SEALOCK JR L J. Aqueous catalyst systems for the water gas shift reaction. 1. Comparative catalyst studies[J]. Ind Eng Chem Prod Res Dev, 1983, 22(3):426-431. doi: 10.1021/i300011a008
    [9] ELLIOTT D C, HALLEN R T, SEALOCK JR L J. Aqueous catalyst systems for the water gas shift reaction 2. Mechanism of basic catalysis[J]. Ind Eng Chem Prod Res Dev, 1983, 22(3):431-435. doi: 10.1021/i300011a009
    [10] ELLIOTT D C, SEALOCK JR L J, BUTNER R S. Aqueous catalyst systems for the water gas shift reaction 3. Continuous gas processing results[J]. Ind Eng Chem Prod Res Dev, 1986, 25(4):541-549. doi: 10.1021/i300024a007
    [11] SCHUCHARDT U, SOUSA M F B. Oxalate as an intermediate in the base catalyzed water-gas shift reaction[J]. Fuel, 1986, 65(5):669-672. doi: 10.1016/0016-2361(86)90362-5
    [12] AKGÜL G, KRUSE A. Influence of salts on the subcritical water-gas shift reaction[J]. J Supercrit Fluids, 2012, 64:207-214. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=299fc20af8e41bb636b6c2fcf3c095d7
    [13] BARBIERB H, VINAUGER M, COLCOMBET J, EPHRITIKHINE G, FRACHISSE J M, MAUREL C. Anion channels in higher plants:functional characterization, molecular structure and physiological role[J]. Biochim Biophys Acta, 2000, 1465(1/2):199-218. https://www.sciencedirect.com/science/article/pii/S0005273600001395
    [14] YASAKA Y, YOSHIDA K, WAKAI C, MATUBAYASI N, NAKAHARA M. Kinetic and equilibrium study on formic acid decomposition in relation to the water-gas-shift reaction[J]. J Phys Chem A, 2006, 110(38):11082-11090. doi: 10.1021/jp0626768
    [15] 许越.化学反应动力学[M]. 1版.北京:化学工业出版社, 2005.

    XU Yue. Chemical Reaction Kinetics[M]. 1st ed. Beijing:Chemical Industry Press, 2005.
    [16] AKIYA N, SAVAGE P E. Roles of water for chemical reactions in high-temperature water[J]. Chem Rev, 2002, 102:2725-2750. doi: 10.1021/cr000668w
    [17] ONSAGER O T, BROWNRIGG M S A, LØDENG R. Hydrogen production from water and CO via alkali metal formate salts[J]. Int J Hydrogen Energy, 1996, 21(10):883-885. doi: 10.1016/0360-3199(96)00031-6
    [18] KRUSE A, DINJUS E. Influence of salts during hydrothermal biomass gasification:The role of the catalyzed water-gas shift reaction[J]. Z Phys Chem, 2005, 219(3):341-366.
  • 加载中
图(10)
计量
  • 文章访问数:  89
  • HTML全文浏览量:  39
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-22
  • 修回日期:  2019-06-17
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-08-10

目录

    /

    返回文章
    返回