留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

半纤维素模型化合物热解机理的理论研究

黄金保 吴隆琴 童红 刘朝 贺超 潘贵英

黄金保, 吴隆琴, 童红, 刘朝, 贺超, 潘贵英. 半纤维素模型化合物热解机理的理论研究[J]. 燃料化学学报(中英文), 2016, 44(8): 911-920.
引用本文: 黄金保, 吴隆琴, 童红, 刘朝, 贺超, 潘贵英. 半纤维素模型化合物热解机理的理论研究[J]. 燃料化学学报(中英文), 2016, 44(8): 911-920.
HUANG Jin-bao, WU Long-qin, TONG Hong, LIU Chao, HE Chao, PAN Gui-ying. Theoretical study on thermal degradation mechanism of hemicellulose model compound[J]. Journal of Fuel Chemistry and Technology, 2016, 44(8): 911-920.
Citation: HUANG Jin-bao, WU Long-qin, TONG Hong, LIU Chao, HE Chao, PAN Gui-ying. Theoretical study on thermal degradation mechanism of hemicellulose model compound[J]. Journal of Fuel Chemistry and Technology, 2016, 44(8): 911-920.

半纤维素模型化合物热解机理的理论研究

基金项目: 

国家自然科学基金 51266002

贵州省教育厅自然科学研究招标项目 黔教科研发[2013]405号

和低品位能源利用技术及系统教育部重点实验室开放基金资助 LLEUTS-201303

详细信息
  • 中图分类号: TK6;O642

Theoretical study on thermal degradation mechanism of hemicellulose model compound

More Information
  • 摘要: 针对半纤维素模型化合物4-O-甲基葡萄糖醛酸的热解,提出了六种可能的反应路径,对各种反应路径中的反应物、产物、中间体和过渡态的结构进行了几何结构全优化,计算了各步反应的标准动力学参数。结果表明,4-O-甲基葡萄糖醛酸热解时,首先通过分子内的氢原子转移发生开环反应而形成链状中间体,然后中间体进一步分解,主要产物是甲醇、乙醇醛、2-羟基-3-甲氧基丁醛酸、乙二醛和2-羟基丁醛酸等;主要的热解竞争产物是甲酸、CO2、CO、4-羟基-3-丁烯酮和甲基乙烯醚等。在半纤维素的热解中,CO2是通过不饱和反应物或中间体脱羧基反应而形成,乙酸则是通过脱O-乙酰基反应而形成。
  • 图  1  4-O-甲基葡萄糖醛酸热解反应路径 (1) 的可能分解历程

    Figure  1  Proposed reaction pathway (1) for the thermal decomposition of 4-O-methyl-glucuronic acid

    图  2  4-O-甲基葡萄糖醛酸热解反应路径 (1) 的势能剖面图

    Figure  2  Potential energy profiles along the reaction pathway (1) for the thermal degradation of 4-O-methyl-glucuronic acid

    图  3  4-O-甲基葡萄糖醛酸热解过程中反应物、产物、中间体和过渡态的优化几何构型 (unit: Å)

    Figure  3  Optimized structure of the reactants, products, intermediates and transition states in the thermal degradation of 4-O-methyl-glucuronic acid (bond length unit is Å)

    图  4  4-O-甲基葡萄糖醛酸热解反应路径 (2)-(6) 的可能分解历程

    Figure  4  Proposed reaction pathways (2)-(6) for the thermal decomposition of 4-O-methyl-glucuronic acid

    图  5  4-O-甲基葡萄糖醛酸热解反应路径 (2)-(6) 的势能剖面图

    Figure  5  Potential energy profiles along the reaction pathways (2)-(6) in the thermal degradation of 4-O-methyl-glucuronic acid

    图  6  4-O-甲基葡萄糖醛酸热解过程中反应物、产物、中间体和过渡态的优化几何构型 (unit: Å)

    Figure  6  Optimized structure of reactants, products, intermediates and transition states in the 4-O-methyl-glucuronic acid pyrolysis (bond length unit is Å)

  • [1] WANG S, GUO X, WANG K, LUO Z.Influence of the interaction of components on the pyrolysis behavior of biomass[J].J Anal Appl Pyrolysis, 2011, 9:183-189.
    [2] HUANG J, LIU C, WU D, TONG H, REN L.Density functional theory studies on pyrolysis mechanism ofβ-O-4 type lignin dimer model compound[J].J Anal Appl Pyrolysis, 2014, 109:98-108. doi: 10.1016/j.jaap.2014.07.007
    [3] MOHAN D, PITTMAN C U, STEELE P H.Pyrolysis of wood/biomass for bio-oil:a critical review[J].Energy Fuels, 2006, 20:848-889. doi: 10.1021/ef0502397
    [4] 黄金保, 武书彬, 程皓, 雷鸣, 梁嘉晋, 童红.木质素模化物键离解能的理论研究[J].燃料化学学报, 2015, 43(4):429-436. doi: 10.1016/S1872-5813(15)30011-6

    HUANG Jin-bao, WU Shu-bin, CHENG Hao, LEI Ming, LIANG Jia-jin TONG Hong.Theoretical study of bond dissociation energies for lignin model compounds[J].J Fuel Chem Technol, 2015, 43(4):429-436. doi: 10.1016/S1872-5813(15)30011-6
    [5] MCKENDRY P.Energy production from biomass (part 1):Overview of biomass[J].Bioresource Technol., 2002, 83:37-46. doi: 10.1016/S0960-8524(01)00118-3
    [6] ZHANG Y, LIU C, XIE H.Mechanism studies onβ-D-glucopyranose pyrolysis by density functional theory methods[J].J Anal Appl Pyrolysis, 2014, 105:23-34. doi: 10.1016/j.jaap.2013.09.016
    [7] 王树荣, 谭洪, 骆仲泱, 王乐, 岑可法.木聚糖快速热解试验研究[J].浙江大学学报 (工学版), 2006, 40(3):419-423. http://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC200603011.htm

    WANG Shu-rong, TAN Hong, LUO Zhong-yang, WANG Le, CEN Ke-fa.Experimental research on rapid pyrolysis of xylan[J].J Zhejiang Univ (Eng Sci), 2006, 40(3):419-423. http://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC200603011.htm
    [8] 徐有明.木材学[M].北京:中国林业出版社, 2006.

    XU You-ming.Wood Technology[M].Beijiing:China Forestry Press, 2006.
    [9] SHAFIZADEH F, MCGINNIS G D, PHILPOT C W.Thermal degradation of xylan and related model compounds[J].Carbohydr Res, 1972, 25:23-33. doi: 10.1016/S0008-6215(00)82742-1
    [10] PATWARDHAN P R, BROWN R C, B.SHANKS H.Product distribution from the fast pyrolysis of hemicellulose[J].ChemSusChem, 2011, 4(5):636-643. doi: 10.1002/cssc.v4.5
    [11] WANG S, RU B, LIN H, LUO Z.Degradation mechanism of monosaccharides and xylan under pyrolytic conditions with theoretic modeling on the energy profiles[J].Bioresour Technol, 2013, 143:378-383. doi: 10.1016/j.biortech.2013.06.026
    [12] SHEN D K, GU S, V.BRIDGWATER A.Study on the pyrolytic behaviour of xylanbased hemicellulose using TG-FTIR and Py-GC-FTIR[J].J Anal Appl Pyrolysis, 2010, 87(2):199-206. doi: 10.1016/j.jaap.2009.12.001
    [13] PONDER G R, RICHARDS G N.Thermal synthesis and pyrolysis of a xylan[J].Carbohydr Res, 1991, 218:143-155. doi: 10.1016/0008-6215(91)84093-T
    [14] 彭云云, 武书彬.麦草半纤维素的快速热裂解实验研究[J].燃料化学学报, 2011, 39(1):21-25. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17674.shtml

    PENG Yun-yun, WU Shu-bin.Fast pyrolysis of hemicellulose in wheat straw[J].J Fuel Chem Technol, 2011, 39(1):21-25. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17674.shtml
    [15] PENG Y, WU S.Fast pyrolysis characteristics of sugarcane bagasse hemicellulose[J].Cell Chem Technol, 2011, 45(9/10):605-612.
    [16] LV G, WU S, LOU R.Characteristics of corn stalk hemicellulose in a tubular reactor[J].Bioresour, 2010, 5(4):2051-2062.
    [17] IVAN S, VARHEGY I G, ANTAL M J.Thermogravimetri/mass spectrometric characterization of the thermal decomposition of 4-O-methyl-D-glucurono-D-xylan[J].J Appl Polym Sci, 1988, 36(3):721-728. doi: 10.1002/app.1988.070360320
    [18] BLASI C D, LANZETTA M.Intrinsic kinetics of isothermal xylan degradation in inert atmosphere[J].J Anal Appl Pyrolysis, 1997, 40-41:287-303. doi: 10.1016/S0165-2370(97)00028-4
    [19] BEAUMONT O.Flash pyrolysis products from beech wood[J].Wood Fiber Sci, 1985, 17(2):28-39. http://www.osti.gov/scitech/biblio/5284022
    [20] HUANG J, LIU C, TONG H, LI W, WU D.Theoretical studies on pyrolysis mechanism of xylopyranose[J].Comput Theor Chem, 2012, 1001:44-50. doi: 10.1016/j.comptc.2012.10.015
    [21] 黄金保, 刘朝, 童红, 李伟民, 伍丹.O-乙酰基-吡喃木糖热解反应机理的理论研究[J].燃料化学学报, 2013, 41(3):285-293. doi: 10.1016/S1872-5813(13)60019-5

    HUANG Jin-bao, LIU Chao, TONG Hong, LI Wei-min, WU Dan.Theoretical studies on pyrolysis mechanism of O-acetyl-xylopyranose[J].J Fuel Chem Technol, 2013, 41(3):285-293. doi: 10.1016/S1872-5813(13)60019-5
    [22] ZHANG Y, LIU C, CHEN X.Unveiling the initial pyrolytic mechanisms of cellulose by DFT study[J].J Anal Appl Pyrolysis, 2015, 113:621-629. doi: 10.1016/j.jaap.2015.04.010
    [23] PARTHASARATHI R, ROMERO R A, REDONDO A, GNANAKARAN S.Theoretical study of the remarkably diverse linkages in lignin[J].J Phys Chem Lett, 2011, 2(20):2660-2666. doi: 10.1021/jz201201q
    [24] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al.Gaussian 09, Revision D.01, Gaussian, Inc., Pittsburgh, PA[M].2009.
    [25] LIU C, HUANG J, HUANG X, LI H, ZHANG Z.Theoretical studies on formation mechanism of CO and CO2 in pyrolysis of cellulose[J].Comput Theor Chem, 2011, 964(1/3):207-212.
  • 加载中
图(6)
计量
  • 文章访问数:  74
  • HTML全文浏览量:  78
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-24
  • 修回日期:  2016-05-06
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-08-10

目录

    /

    返回文章
    返回