留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AlOOH在一氧化碳加氢反应中结构与性能的研究

李磊磊 田慧辉 韩燕梅 刘琰 高志华 黄伟

李磊磊, 田慧辉, 韩燕梅, 刘琰, 高志华, 黄伟. AlOOH在一氧化碳加氢反应中结构与性能的研究[J]. 燃料化学学报(中英文), 2016, 44(7): 830-836.
引用本文: 李磊磊, 田慧辉, 韩燕梅, 刘琰, 高志华, 黄伟. AlOOH在一氧化碳加氢反应中结构与性能的研究[J]. 燃料化学学报(中英文), 2016, 44(7): 830-836.
LI Lei-lei, TIAN Hui-hui, HAN Yan-mei, LIU Yan, GAO Zhi-hua, HUANG Wei. Structure and property of AlOOH in CO hydrogenation[J]. Journal of Fuel Chemistry and Technology, 2016, 44(7): 830-836.
Citation: LI Lei-lei, TIAN Hui-hui, HAN Yan-mei, LIU Yan, GAO Zhi-hua, HUANG Wei. Structure and property of AlOOH in CO hydrogenation[J]. Journal of Fuel Chemistry and Technology, 2016, 44(7): 830-836.

AlOOH在一氧化碳加氢反应中结构与性能的研究

基金项目: 

国家自然科学基金 21336006

山西省自然科学基金 2012011046-1

详细信息
    通讯作者:

    高志华, Tel/Fax: 0351-6018466, E-mail: gaozhihua@tyut.edu.cn

  • 中图分类号: O643

Structure and property of AlOOH in CO hydrogenation

Funds: 

The project was supported by the National Natural Science Foundation of China 21336006

Natural Science Foundation of Shanxi Province 2012011046-1

More Information
  • 摘要: 采用沉淀水热法, 通过调变水热过程中水与凝胶的质量比制备了不同的AlOOH, 将其与工业甲醇催化剂C302混合形成复合催化剂, 考察复合催化剂对一氧化碳加氢的影响, 同时运用XRD、FT-IR、BET、NH3-TPD-MS、TG-DTG和H2-TPR等技术对不同AlOOH进行了表征。结果表明, 水热过程中水与凝胶的质量比对AlOOH择优取向晶面、孔结构、表面酸强度等存在明显影响, 进而导致复合催化剂产物中出现分布不同的低碳醇或二甲醚。其中, 当水和凝胶的质量比为2:1时, AlOOH的(020) 和(120) 晶面择优取向, 孔容增大, 且其表面具有适宜的强弱酸比例中心, 复合催化剂呈现出较高的低碳醇选择性, 表明AlOOH具有碳链增长的作用, 这为合成气制取低碳醇催化剂提供了新的思路。
  • 图  1  不同AlOOH的XRD谱图

    Figure  1  XRD patterns of different AlOOH samples

    图  2  不同AlOOH样品的FT-IR谱图

    Figure  2  FT-IR spectra of different AlOOH samples

    图  3  不同AlOOH样品的吸脱附曲线

    Figure  3  N2 adsorption and desorption isotherms of different AlOOH samples

    图  4  不同AlOOH样品的NH3-TPD-MS谱图

    Figure  4  NH3-TPD-MS profiles of different AlOOH samples

    图  5  AlOOH样品的TG-DTG谱图

    Figure  5  TG-DTG curves of different AlOOH samples

    图  6  不同催化剂的H2-TPR谱图

    Figure  6  H2-TPR curves of different catalysts

    表  1  复合催化剂的CO加氢活性评价

    Table  1  Performance of composite catalysts in CO hydrogenation

    Catalyst CO conversion xmol/% Selectivity smol/%
    Mixed alcoholsa C2+OHb DME CxHy CO2
    C-2+C302 14.8 61.0 13.5 1.0 3.6 34.4
    C-4+C302 19.1 21.6 3.7 24.7 19.4 34.3
    C-6+C302 18.5 23.1 3.8 24.4 18.3 34.2
    reaction conditions: t=280 ℃, p=4.0 MPa, GHSV=2 000 h-1, n(H2)/ n(CO)=1:2; a: mixed alcohols: alcohols with one or more carbons, including methanol, ethanol, propanol, butanol; b: C2+OH means higher alcohols which included ethanol, propanol and butanol
    下载: 导出CSV

    表  2  不同AlOOH样品的织构性质

    Table  2  Textural properties of different AlOOH samples

    Catalyst BET surface area A/(m2·g-1) Pore size d/nm Total pore volume v/(cm3·g-1)
    C-2 45.72 12.43 1.22
    C-4 49.96 12.35 0.70
    C-6 49.69 12.39 0.80
    下载: 导出CSV
  • [1] GALLEGO G S, BATIOT-DUPEYRAT C, BARRAULT J, FLOREZ E, MONDRAGÓN F. Dry reforming of methane over LaNi1-yByOδ (B=Mg, Co) perovskites used as catalyst precursor[J]. Appl Catal A: Gen, 2008, 334(1/2): 251-258.
    [2] SAN-JOSÉ-ALONSO D, JUAN-JUAN J, ILLÁN-GÓMEZ M J, ROMÁN-MARTÍNEZ M C. Ni, Co and bimetallic Ni-Co catalysts for the dry reforming of methane[J]. Appl Catal A: Gen, 2009, 371(1/2): 54-59. https://www.researchgate.net/publication/257373495_Ni_Co_and_bimetallic_Ni-Co_catalysts_for_the_dry_reforming_of_methane
    [3] JAKOBSEN J G, JAKOBSEN M, CHORKENDORFF I, SEHESTED J. Methane steam reforming kinetics for a rhodium-based catalyst[J]. Catal Lett, 2010, 140(3): 90-97. doi: 10.1007/s10562-010-0436-7?view=classic
    [4] XU J H, YEUNG C M Y, NI J, MEUNIER F, ACERBI N, FOWLES M, TSANG S C. Methane steam reforming for hydrogen production using low water-ratios without carbon formation over ceria coated Ni catalysts[J]. Appl Catal A: Gen, 2008, 345(2): 119-127. doi: 10.1016/j.apcata.2008.02.044
    [5] CHRISTIAN ENGER B, LØDENG R, HOLMEN A. A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts[J]. Appl Catal A: Gen, 2008, 346(1/2): 1-27. https://www.researchgate.net/publication/234842361_A_review_of_catalytic_partial_oxidation_of_methane_to_synthesis_gas_with_emphasis_on_reaction_mechanisms_over_transition_metal_catalysts
    [6] SILÜA C R B, DA CONCEIÇÃO L, RIBEIRO N F P, SOUZA M M V M. Partial oxidation of methane over Ni-Co perovskite catalysts[J].Catal Commun, 2011, 12(7): 665-668. doi: 10.1016/j.catcom.2010.12.025
    [7] MAESTRI M, VLACHOS D G, BERETTA A, GROPPI G, TRONCONI E. Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models[J]. J Catal, 2008, 259(2): 211-222. doi: 10.1016/j.jcat.2008.08.008
    [8] MORTOLA V B, DAMYANOVA S, ZANCHET D, BUENO J M C. Surface and structural features of Pt/CeO2-La2O3-Al2O3 catalysts for partial oxidation and steam reforming of methane[J]. Appl Catal B: Environ, 2011, 107(3/4): 221-236.
    [9] BAEK S C, BAE J W, CHEON J Y, JUN K W, LEE K Y. Combined steam and carbon dioxide reforming of methane on Ni/MgAl2O4: Effect of CeO2 promoter to catalytic performance[J]. Catal Lett, 2011, 141(2): 224-234. doi: 10.1007/s10562-010-0483-0
    [10] 李德宝, 马玉刚, 齐会杰, 李文怀, 孙予罕, 钟炳. CO加氢合成低碳混合醇催化体系研究新进展[J].化学进展, 2004, 16(4): 584-592. http://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ200404013.htm

    LI De-bao, MA Yu-gang, QI Hui-Jie, LI Wen-huai, SUN Yu-han, ZHONG Bing. Progress in synthesis of mixed alcohols from CO hydrogenation[J]. Prog Chem, 2004, 16(4): 584-592. http://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ200404013.htm
    [11] 葛庆杰, 徐恒泳, 李文钊.煤层气经合成气制液体燃料的关键技术[J].化工进展, 2009, 28(6): 917-921. http://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ200906003.htm

    GE Qing-jie, XU Heng-yong, LI Wen-zhao. Key techniques of liquid fuel synthesis from coal-bed methane[J]. Chem Ind Eng Prog, 2009, 28(6): 917-921. http://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ200906003.htm
    [12] SURISETTY V R, DALAI A K, KOZINSKI J. Influence of porous characteristics of the carbon support on alkali-modified trimetallic Co-Rh-Mo sulfided catalysts for higher alcohols synthesis from synthesis gas[J]. Appl Catal A: Gen, 2011, 393(1/2): 50-58. http://linkinghub.elsevier.com/retrieve/pii/S0926860X10007805
    [13] SHU L, KALIAGUINE S. WELL-DISPERSED perovskite-type oxidation catalysts[J]. Appl Catal B: Environ, 1998, 16(4): L303-L308. doi: 10.1016/S0926-3373(97)00097-0
    [14] MAHDAVI V, PEYROVI M H, ISLAMI M, YEGANE M J. Synthesis of higher alcohols from syngas over Cu-Co2O3/ZnO, Al2O3 catalyst[J]. Appl Catal A: Gen, 2005, 281(1/2): 259-265.
    [15] 杨成, 李建青, 蔡飞鹏, 孙立, 吴晋沪.一种用于合成气制低碳醇的催化剂及制法和应用:中国, CN101653729[P]. 2010-02-24.

    YANG Cheng, LI Jian-qing, CAI Fei-peng, SUN Li, WU Jing-hu. Preparation and application of catalysts for higher alcohols synthesis from syngas: CN, 101653729[P]. 2010-02-24.
    [16] SUBRAMANI V, GANGWAL S K. A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol[J]. Energy Fuels, 2008, 22(2): 814-839. doi: 10.1021/ef700411x
    [17] 朱秋峰, 张荣俊, 贺德华. CaO改性对CuZnAlZr催化剂在合成气制低碳醇中性能的影响[J].物理化学学报, 2012, 28(6): 1461-1466. http://www.cnki.com.cn/Article/CJFDTOTAL-WLHX201206027.htm

    ZHU Qiu-feng, ZHANG Rong-jun, HE De-hua. Effect of CaO modification on performance of CuZnAlZr catalyst in synthesis of higher alcohols from synthesis gas[J]. Acta Phys-Chim Sin, 2012, 28(6): 1461-1466. http://www.cnki.com.cn/Article/CJFDTOTAL-WLHX201206027.htm
    [18] SUBRAMANIAN N D, BALAJI G, KUMAR CHALLA S S R, SPIVERY JAMES J. Development of cobalt-copper nanoparticles as catalysts for higher alcohol synthesis from syngas[J]. Catal Today, 2009, 147(2): 100-106. doi: 10.1016/j.cattod.2009.02.027
    [19] LIN M G, FANG K G, LI D B, SUN Y H. CO hydrogenation to mixed alcohols over co-precipitated Cu-Fe catalysts[J]. Catal Commun, 2008, 9(9): 1869-1873. doi: 10.1016/j.catcom.2008.03.004
    [20] SURISETTY V R, TAVASOLI A, DALAI A K. Synthesis of higher alcohols from syngas over alkali promoted MoS2 catalysts supported on multi-walled carbon nanotubes[J]. Appl Catal A: Gen, 2009, 365(2): 243-251. doi: 10.1016/j.apcata.2009.06.017
    [21] 刘雷, 黄伟, 高志华.一种甲醇脱水制二甲醚的催化剂及其制备法:CN, 200710139633.0[P].2008-04-09.

    LIU Lei, HUANG Wei, GAO Zhi-hua. The preparation method of catalyst for DME synthesis from methanol dehydration: CN, 200710139633.0[P]. 2008-04-09.
    [22] 樊金串, 吴慧, 黄伟, 谢克昌.表面活性剂对完全液相法制Cu-Zn-Al浆状催化剂结构和性能的影响[J].高等学校化学学报, 2008, 29(5): 993-999. http://www.cnki.com.cn/Article/CJFDTOTAL-GDXH200805026.htm

    FAN Jin-chuan, WU Hui, HUANG Wei, XIE Ke-chang. Effect of surfactants on structure and performance of Cu-Zn-Al catalyst prepared by complete liquid-phase technology[J]. Chem J Chin Univ, 2008, 29(5): 993-999. http://www.cnki.com.cn/Article/CJFDTOTAL-GDXH200805026.htm
    [23] BOKHIMI X, SANCHEZ VALENTE J, PEDRAZA F. Crystallization of sol-gel boehmite via hydrothermal annealing[J]. Solid State Chem, 2002, 166(1): 182-190. doi: 10.1006/jssc.2002.9579
    [24] CHEN X Y, ZHANG Z J, LI X L, LEE S W. Controlled hydrothermal synthesis of colloidal boehmite (γ-AlOOH) nanorods and nanoflakes and their conversion into γ-Al2O3 nanocrystals[J]. Solid State Commun, 2008, 145(7/8): 368-373.
    [25] LI G C, LIU Y Q, LIU D, LIU L H, LIU C G. Synthesis of flower-like Boehmite (AlOOH) via a simple solvothermal process without surfactant[J]. Mater Res Bull, 2010, 45(10): 1487-1491. doi: 10.1016/j.materresbull.2010.06.013
    [26] XU Z H, YU J G, LOW J X, JARONIEC M. Microemulsion-assisted synthesis of mesoporous aluminum oxyhydroxide nanoflakes for efficient removal of gaseous formaldehyde[J]. ACS Appl Mater Interfaces, 2014, 6(3): 2111-2117. doi: 10.1021/am405224u
    [27] JEFFERY A G, DAVID B H, MARGARET E O. Alcohol and thiol adsorption on (oxy) hydroxide and carbon surfaces: Molecular dynamics simulation and desorption experiments[J]. J Phys Chem C, 2012, 116(51): 26756-26764. doi: 10.1021/jp305275q
    [28] HUANG J, WANG Y, ZHENG J M, DAI W L, FAN K N. Influence of support surface basicity and gold particle size on catalytic activity of Au/γ-AlOOH and Au/γ-Al2O3 catalyst in aerobic oxidation of α, ω-diols to lactones[J]. Appl Catal B: Environ, 2011, 103(3): 343-350.
    [29] 栾春晖, 吕经纬, 阴丽华, 黄伟.完全液相法AlOOH催化甲醇脱水行为研究[J].太原理工大学学报, 2014, 45(1): 92-96. http://www.cnki.com.cn/Article/CJFDTOTAL-TYGY201401020.htm

    LUAN Chun-hui, LÜ Jing-wei, YIN Li-hua, HUANG Wei. Catalysis performance of AlOOH catalysts prepared by complete liquid-phase method for methanol dehydration to dimethyl ether in a fixed bed[J]. J Taiyuan Univ Technol, 2014, 45(1): 92-96. http://www.cnki.com.cn/Article/CJFDTOTAL-TYGY201401020.htm
    [30] 肖康, 鲍正洪, 齐行振, 王新星, 钟良枢, 房克功, 林明桂, 孙予罕.合成气制混合醇双功能催化研究进展[J].催化学报, 2013, 34(1): 116-129. doi: 10.1016/S1872-2067(11)60496-8

    XIAO Kang, BAO Zheng-hong, QI Xing-zhen, WANG Xin-xing, ZHONG Liang-shu, FANG Ke-gong, LIN Ming-gui, SUN Yu-han. Advances in bifunctional catalysis for higher alcohol synthesis from syngas[J]. Chin J Catal, 2013, 34(1): 116-129. doi: 10.1016/S1872-2067(11)60496-8
    [31] 宋宪根, 丁云杰, 陈维茵, 董文达, 裴彦鹏, 臧娟, 严丽, 吕元.铁镍磷化物催化剂在CO加氢制低碳醇反应的应用[J].催化学报, 2012, 33(11/12): 1938-1944. http://www.cnki.com.cn/Article/CJFDTOTAL-CHUA201212013.htm

    SONG Xian-gen, DING Yun-jie, CHEN Wei-yin, DONG Wen-dong, PEI Yan-peng, ZANG Juan, YAN Li, LÜ yuan. Synthesis of mixed alcohols from CO hydrogenation over Iron and nickel metal phosphide catalysts[J]. Chin J Catal, 2012, 33(11/12): 1938-1944. http://www.cnki.com.cn/Article/CJFDTOTAL-CHUA201212013.htm
    [32] PETROVIC R, MILONJIC S, JOKANOVIC V, KOSTIC-GVOZDENOVIC L, PETROVIC-PRELEVIC I, JANACKOVIC D. Influence of synthesis parameters on the structure of boehmite sol particles[J]. Powder Technol, 2003, 133(1/3): 185-189. https://www.researchgate.net/publication/223502010_Influence_of_Synthesis_Parameters_on_the_Structure_of_Bohmite_Sol_Particles
    [33] 罗玉长.拟薄水铝石结构的演化[J].无机盐工业, 1998, 30(2): 3-5. http://www.cnki.com.cn/Article/CJFDTOTAL-QJSS200102003.htm

    LUO Yu-chang. The structure evolution of pseudo-boehmite[J]. Inorg Chem Ind, 1998, 30(2): 3-5. http://www.cnki.com.cn/Article/CJFDTOTAL-QJSS200102003.htm
    [34] 刘建国, 定明月, 王铁军, 马隆龙. Cu-Fe基双孔载体催化剂结构和低碳醇合成反应性能[J].物理化学学报, 2012, 28(8): 1964-1970. http://www.cnki.com.cn/Article/CJFDTOTAL-WLHX201208026.htm

    LIU Jian-guo, DING Ming-yue, WANG Tie-jun, MA Long-long. Structure and performance of Cu-Fe bimodal support for higher alcohol syntheses[J]. Acta Phys-Chim Sin, 2012, 28(8): 1964-1970. http://www.cnki.com.cn/Article/CJFDTOTAL-WLHX201208026.htm
    [35] XU M T, LUNSFORD J H, GOODMAN D W, BHATTACHARYYA A. Synthesis of dimethyl ether (DME) from methanol over solid-acid catalysts[J]. Appl Catal A: Gen, 1997, 149(2): 289-301. doi: 10.1016/S0926-860X(96)00275-X
    [36] JOO O S, JUNG K D, HAN S H. Modification of H-ZSM-5 and γ-alumina with formaldehyde and its application to the synthesis of dimethyl ether from syn-gas[J]. Bull Korean Chem Soc, 2002, 23(8): 1103-1105. doi: 10.5012/bkcs.2002.23.8.1103
    [37] 解峰, 黎汉生, 赵学良, 任飞, 王德峥, 王金福, 刘敬利.甲醇在活性Al2O3催化剂表面的吸附与脱水反应[J].催化学报, 2004, 25(5): 403-408.

    XIE Feng, LI Han-sheng, ZHAO Xue-Liang, REN Fei, WANG De-zheng, Wang Jin-fu, LIU Jing-li. Adsorption and dehydration of methanol on Al2O3 Catalyst[J]. Chin J Catal, 2004, 25(5): 403-408.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  54
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-18
  • 修回日期:  2016-03-23
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-07-10

目录

    /

    返回文章
    返回