留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

燃煤烟气中砷对V2O5-WO3/TiO2SCR脱硝催化剂性能的影响

丁健 刘清才 孔明 林凡 杨剑 任山

丁健, 刘清才, 孔明, 林凡, 杨剑, 任山. 燃煤烟气中砷对V2O5-WO3/TiO2SCR脱硝催化剂性能的影响[J]. 燃料化学学报(中英文), 2016, 44(4): 495-499.
引用本文: 丁健, 刘清才, 孔明, 林凡, 杨剑, 任山. 燃煤烟气中砷对V2O5-WO3/TiO2SCR脱硝催化剂性能的影响[J]. 燃料化学学报(中英文), 2016, 44(4): 495-499.
DING Jian, LIU Qing-cai, KONG Ming, LIN Fan, YANG Jian, REN Shan. Influence of arsenic in flue gas on the performance of V2O5-WO3/TiO2 catalyst in selective catalytic reduction of NOx[J]. Journal of Fuel Chemistry and Technology, 2016, 44(4): 495-499.
Citation: DING Jian, LIU Qing-cai, KONG Ming, LIN Fan, YANG Jian, REN Shan. Influence of arsenic in flue gas on the performance of V2O5-WO3/TiO2 catalyst in selective catalytic reduction of NOx[J]. Journal of Fuel Chemistry and Technology, 2016, 44(4): 495-499.

燃煤烟气中砷对V2O5-WO3/TiO2SCR脱硝催化剂性能的影响

基金项目: 

国家自然科学基金 51274263

国家自然科学基金 51204220

重庆市自然科学基金 cstc2013jjB0035

详细信息
  • 中图分类号: X703.5

Influence of arsenic in flue gas on the performance of V2O5-WO3/TiO2 catalyst in selective catalytic reduction of NOx

More Information
  • 摘要: 通过将商业V2O5-WO3/TiO2脱硝催化剂暴露于含As2O3烟气中,制备了砷中毒催化剂,并运用X射线衍射(XRD)、比表面积(BET)、NH3化学吸附、傅里叶变换红外光谱(FT-IR)、X射线光电子能谱等技术表征分析了砷对催化剂性能的影响,并提出了催化剂砷中毒机理。结果表明,砷对催化剂具有严重的毒害作用,As2O3会吸附在催化剂表面,并被催化剂氧化形成As2O5覆盖层,减小催化剂比表面积,减少催化剂V活性位,阻止催化剂对NH3的吸附,造成催化剂失活。
  • 图  1  实验装置示意图

    Figure  1  Schematic diagram of the experimental system

    图  2  不同温度下砷对催化剂脱硝效率的影响

    Figure  2  Effect of arsenic on the activity of V2O5-WO3/TiO2 catalyst under different temperatures

    图  3  砷中毒前后催化剂的XRD谱图

    Figure  3  XRD patterns of the V2O5-WO3/TiO2 catalysts before and after arsenic poisoning for 1000 and 3000h

    图  4  砷中毒前后催化剂的孔径分布

    Figure  4  Pore size distribution of the V2O5-WO3/TiO2 catalysts before and after arsenic poisoning for 1000 and 3000h

    图  5  砷中毒前后催化剂的NH3化学吸附谱图

    Figure  5  NH3 chemisorption profiles of the V2O5-WO3/TiO2 catalysts before and after arsenic poisoning for 1000 and 3000h

    图  6  砷中毒前后催化剂的傅里叶变换红外光谱谱图

    Figure  6  FT-IR profiles of the V2O5-WO3/TiO2 catalysts before and after arsenic poisoning for 1000 and 3000h

    图  7  砷中毒前后催化剂X射线光电子能谱谱图

    Figure  7  XPS survey spectra of the V2O5-WO3/TiO2 catalysts before and after arsenic poisoning for 1000 and 3000h

    图  8  催化剂中As 3d的X射线光电子能谱图

    Figure  8  As 3d XPS spectra of the V2O5-WO3/TiO2 catalysts after arsenic poisoning for 1000 and 3000h

    图  9  催化剂中V 2p 的X射线光电子能谱谱图

    Figure  9  V 2p XPS spectra of the V2O5-WO3/TiO2 catalysts before and after arsenic poisoning for 1000 and 3000h

    图  10  SCR催化剂砷中毒机理

    Figure  10  Proposed arsenic poisoning mechanism of the V2O5-WO3/TiO2 catalyst for SCR

    表  1  砷中毒前后催化剂比表面积、总孔容、平均孔径

    Table  1  Textural properties of the V2O5-WO3/TiO2 catalysts before and after arsenic poisoning

    SampleBET surface area A/(m2·g-1)Total pore volume v/(cm3·g-1)Average pore diameter d/nm
    fresh53.30.21816.36
    As 1000h46.90.22519.19
    As 3000h48.10.20416.97
    下载: 导出CSV
  • [1] ZHENG Y J, JENSEN A D, JOHNSSON J E. Laboratory investigation of selective catalytic reduction catalysts: Deactivation by potassium compounds and catalyst regeneration[J]. Ind Eng Chem Res, 2004, 43(4): 941-947. doi: 10.1021/ie030404a
    [2] 黄妍, 童志权, 伍斌, 张俊丰. V2O5-CeO2/TiO2催化剂上低温氨选择性催化还原NO的性能[J]. 燃料化学学报, 2008, 36(5): 616-620. doi: 10.1016/S1872-5813(08)60036-5

    Huang Yan, Tong Zhi-quan, Wu Bin, ZHANG Jun-feng, Low temperature selective catalytic reduction of NO by ammonia over V2O5-CeO2/TiO2[J]. J Fuel Chem Technol, 2008, 36(5): 616-620. doi: 10.1016/S1872-5813(08)60036-5
    [3] 胡石磊, 叶代启, 付名利. V2O5/TiO2-SiO2表面酸性对选择性催化还原NO及抗碱金属性能的影响[J]. 无机化学学报, 2008, 24(7): 1113-1118.

    HU Shi-lei, YE Dai-qi, FU Ming-li. Effect of surface acidity on NO reduction and resistance towards alkali poisoning over V2O5/TiO2-SiO2[J]. Chin J Inorg Chem, 2008, 24(7): 1113-1118.
    [4] CASAGRANDE L, LIETTI L, NOVA I, FORZATTI P, BAIKER A. SCR of NO by NH3 over TiO2-supported V2O5-MoO3 catalysts: Reactivity and redox behavior[J]. Appl Catal B: Environ, 1999, 22(1): 63-77. doi: 10.1016/S0926-3373(99)00035-1
    [5] LIETTI L, FORZATTI P, BREGANI F. Steady-state and transient reactivity study of TiO2-supported V2O5-WO3 De-NOx catalysts: Relevance of the vanadium-tungsten interaction on the catalytic activity[J]. Ind Eng Chem Res, 1996, 35(11): 3884-3892. doi: 10.1021/ie960158l
    [6] LIU Z, WOO S. Recent advances in catalytic DeNOx science and technology[J]. Catal Rev, 2006, 48(1): 43-89. doi: 10.1080/01614940500439891
    [7] SENIOR C L, LIGNELL D O, SAROFIM A F, MEHTA A. Modeling arsenic partitioning in coal-fired power plants[J]. Combust Flame, 2006, 147(3): 209-221. doi: 10.1016/j.combustflame.2006.08.005
    [8] CONTRERAS M L, AROSTEGUI J M, ARMESTO L. Arsenic interaction during co-combustion processes based on thermodynamic equilibrium calculations[J]. Fuel, 2009, 88(3): 539-546. doi: 10.1016/j.fuel.2008.09.028
    [9] MUKHERJEE A B. The selective catalytic reduction of NOx emissions from utility boilers[J]. Fuel Energy Abstr, 1994, 28: 585-608.
    [10] PENG Y, LI J, SI W, LUO J, WANG Y, FU J, LI X, CRITTENDEN J, HAO J. Deactivation and regeneration of a commercial SCR catalyst: Comparison with alkali metals and arsenic[J]. Appl Catal B: Environ, 2015, 168-169: 195-202. https://www.researchgate.net/publication/270517401_Deactivation_and_regeneration_of_a_commercial_SCR_catalyst_Comparison_with_alkali_metals_and_arsenic
    [11] ZHAO H, BENNICI S, SHEN J, AUROUX A. The influence of the preparation method on the structural, acidic and redox properties of V2O5-TiO2/SO2-4 catalysts[J]. Appl Catal A: Gen, 2009, 356(2): 121-128. doi: 10.1016/j.apcata.2008.12.037
    [12] STOILOVA D, GEORGIEV M, MARINOVA D. Infrared study of the vibrational behavior of SO2-4 guest ions matrix-isolated in metal (II) chromates (Me=Ca, Sr, Ba)[J]. Vib Spectrosc, 2005, 39(1): 46-49. doi: 10.1016/j.vibspec.2004.10.007
    [13] HE S, ZHOU J, ZHU Y, LUO Z, NI M, CEN K. Mercury oxidation over a vanadia-based selective catalytic reduction catalyst[J]. Energy Fuels, 2009, 23(1): 253-259. doi: 10.1021/ef800730f
    [14] MILLER F A, COUSINS L R. Infrared and Raman spectra of vanadium oxytrichloride[J]. J Chem Phys, 1957, 26: 329-331. doi: 10.1063/1.1743293
    [15] MARTINSON C A, REDDY K J. Adsorption of arsenic (III) and arsenic (V) by cupric oxide nanoparticles[J]. J Colloid Interf Sci, 2009, 336(2): 406-411. doi: 10.1016/j.jcis.2009.04.075
    [16] JIANG Y, GAO X, ZHANG Y, WU W, SONG H, LUO Z, CEN K. Effects of PbCl2 on selective catalytic reduction of NO with NH3 over vanadia-based catalysts[J]. J Hazard Mater, 2014, 274(15): 270-278.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  121
  • HTML全文浏览量:  45
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-26
  • 修回日期:  2016-01-05
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-04-30

目录

    /

    返回文章
    返回