留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

还原-氧化预处理对Co3O4催化分解N2O性能的影响

郑珂 王永钊 胡晓波 武瑞芳 刘晓丽 赵永祥

郑珂, 王永钊, 胡晓波, 武瑞芳, 刘晓丽, 赵永祥. 还原-氧化预处理对Co3O4催化分解N2O性能的影响[J]. 燃料化学学报(中英文), 2019, 47(4): 455-463.
引用本文: 郑珂, 王永钊, 胡晓波, 武瑞芳, 刘晓丽, 赵永祥. 还原-氧化预处理对Co3O4催化分解N2O性能的影响[J]. 燃料化学学报(中英文), 2019, 47(4): 455-463.
ZHENG Ke, WANG Yong-zhao, HU Xiao-bo, WU Rui-fang, LIU Xiao-li, ZHAO Yong-xiang. Effect of reduction-oxidation pretreatment on the catalytic performance of Co3O4 catalyst in N2O decomposition[J]. Journal of Fuel Chemistry and Technology, 2019, 47(4): 455-463.
Citation: ZHENG Ke, WANG Yong-zhao, HU Xiao-bo, WU Rui-fang, LIU Xiao-li, ZHAO Yong-xiang. Effect of reduction-oxidation pretreatment on the catalytic performance of Co3O4 catalyst in N2O decomposition[J]. Journal of Fuel Chemistry and Technology, 2019, 47(4): 455-463.

还原-氧化预处理对Co3O4催化分解N2O性能的影响

基金项目: 

国家自然科学基金 U1710221

详细信息
  • 中图分类号: O643

Effect of reduction-oxidation pretreatment on the catalytic performance of Co3O4 catalyst in N2O decomposition

Funds: 

the National Natural Science Foundation of China U1710221

More Information
  • 摘要: 采用液相沉淀法制备了Co3O4催化剂,并对其进行还原-氧化预处理制得Co3O4-RO。通过XRD、N2-physisorption、Raman、H2-TPR、XPS和O2-TPD等技术对催化剂进行表征,在连续流动微反应装置上考察了催化剂催化分解N2O性能。结果表明,经过还原-氧化预处理,与Co3O4催化剂相比,Co3O4-RO结晶度变差,晶粒粒径减小,尤其是尖晶石结构重构过程削弱了Co-O键,增强了催化剂表面的氧物种脱附能力,降低了催化分解N2O反应的活化能,因而显著提高了催化剂的催化活性。同时,Co3O4-RO对原料气中的O2 2%(体积分数)和H2O 2.3%(体积分数)表现出较强的耐受性。
  • 图  1  Co3O4和Co3O4-RO催化剂的XRD谱图

    Figure  1  XRD patterns of the Co3O4 and Co3O4-RO catalysts

    a: Co3O4; b: Co3O4-RO

    图  2  Co3O4和Co3O4-RO催化剂的Raman谱图

    Figure  2  Raman spectra of the Co3O4 and Co3O4-RO catalysts

    a: Co3O4; b: Co3O4-RO

    图  3  Co3O4和Co3O4-RO催化剂的H2-TPR谱图

    Figure  3  H2-TPR profiles of the Co3O4 and Co3O4-RO catalysts

    a: Co3O4; b: Co3O4-RO

    图  4  Co3O4和Co3O4-RO催化剂的XPS谱图

    Figure  4  XPS spectra of the Co3O4 and Co3O4-RO catalysts

    (a): Co 2p; (b): O 1s a: Co3O4; b: Co3O4-RO

    图  5  Co3O4和Co3O4-RO催化剂的O2-TPD谱图

    Figure  5  O2-TPD profiles of the Co3O4 and Co3O4-RO catalysts

    a: Co3O4; b: Co3O4-RO

    图  6  Co3O4和Co3O4-RO催化剂的活性评价

    Figure  6  N2O conversion over the Co3O4 and Co3O4-RO catalysts

    图  7  Co3O4和Co3O4-RO催化剂的稳定性评价

    Figure  7  N2O conversion versus time-on-stream at 420 ℃ of the Co3O4 and Co3O4-RO catalysts

    图  8  Co3O4和Co3O4-RO催化剂的lnk与1/T关系图

    Figure  8  lnk as a function of 1/T for the reaction over the Co3O4 and Co3O4-RO catalysts

    表  1  Co3O4和Co3O4-RO催化剂的织构性质和晶粒粒径

    Table  1  Textural properties and crystal size of the Co3O4 and Co3O4-RO catalysts

    SampleBET surface area
    A/(m2·g-1)
    Total pore volume
    v/(cm3·g-1)
    Average pore
    diameter d/nm
    Crystal
    size d/nm
    Lattice
    parameter /nm
    Co3O447.80.2016.124.50.8084
    Co3O4-RO21.10.1527.78.10.9835
    下载: 导出CSV

    表  2  Co3O4和Co3O4-RO催化剂的H2消耗量

    Table  2  H2 consumption of the Co3O4 and Co3O4-RO catalysts obtained from H2-TPR profiles

    SampleH2 consumption /(mmol·g-1)Peak β/ peak α
    peak αpeak β
    Co3O44.1712.342.96
    Co3O4-RO4.319.862.29
    下载: 导出CSV

    表  3  Co3O4和Co3O4-RO催化剂的XPS表征

    Table  3  XPS results of the Co3O4 and Co3O4-RO catalysts

    CatalystBinding energy
    of Co 2p/eV
    ΔEBinding energy of
    O 1s/eV
    Oα1
    /(Oα1 + Oα2 + Oβ)
    Oα2
    /(Oα1 + Oα2 + Oβ)
    Co 2p3/2Co 2p1/2Oα1Oα2Oβ
    Co3O4779.4794.415.0530.7532.5529.70.230.13
    Co3O4-RO779.2794.315.1530.8532.1529.40.340.10
    下载: 导出CSV

    表  4  Co3O4和Co3O4-RO的动力学参数

    Table  4  Kinetic parameters of the reaction over Co3O4 and Co3O4-RO catalysts

    Catalystt/℃r/(μmol·s-1·g-1)k/(m3·s-1·g-1)Ea /(kJ·mol-1)
    Co3O42800.0287.80×10-775.9
    3000.0481.48×10-6
    3200.0702.47×10-6
    Co3O4-RO2600.0491.52×10-651.6
    2800.0903.63×10-6
    3000.1105.37×10-6
    下载: 导出CSV
  • [1] 联合国环境规划署著.刘重业.世界环境数据手册[M].北京: 中国科学技术出版社, 1990: 19-20.

    United Nations Environment Programme. LIU Chong-ye. World Environmental Data Manual[M]. Beijing: China Science and Technology Press, 1990: 19-20.
    [2] 徐向阳, 谷成, 王虹, 张远远, 柯琰, 张成乐, 王明锦, 宋宝华, 李翠清. Co/Hβ催化剂上N2O的分解性能研究[J].燃料化学学报, 2014, 42(7):877-883. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18460.shtml

    XU Xiang-yang, GU Cheng, WANG Hong, ZHANG Yuan-yuan, KE Yan, ZHANG Cheng-le, WANG Ming-jin, SONG Bao-hua, LI Cui-qing. Catalytic performance of Co/Hβ in N2O decomposition[J]. J Fuel Chem Technol, 2014, 42(7):877-883. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18460.shtml
    [3] RUSSO N, MESCIA D, FINO D, SARACCO G. N2O decomposition over perovskite catalysts[J]. Ind Eng Chem Res, 2007, 46(12):4226-4231. doi: 10.1021/ie0612008
    [4] HUSSAIN M, PARVEEN A, FINO D, RUSSO N. Modified KIT-6 and SBA-15-spherical supported metal catalysts for N2O decomposition[J]. J Environ Chem Eng, 2013, 1(3):164-174. doi: 10.1016/j.jece.2013.04.013
    [5] HERMES A C, HAMILTON S M, HOPKINS W S, HARDING D J, KERPAL C, MEIJER G, FIELICKE A, MACKENZIE S R. Effects of coadsorbed oxygen on the infrared driven decomposition of N2O on isolated Rh5+ clusters[J]. J Phys Chem Lett, 2011, 2(24):3053-3057. doi: 10.1021/jz2012963
    [6] ZHU Y Y, WANG X D, WANG A Q, WU G T, WANG J H, ZHANG T. Identification of the chemical state of Fe in barium hexaaluminate using Rietveld refinement and 57Fe Mössbauer spectroscopy[J]. J Catal, 2011, 283:149-160. doi: 10.1016/j.jcat.2011.08.001
    [7] 郑丽, 吴藏藏, 徐秀峰. N2O在Mg-Co和Mg-Mn-Co复合氧化物上的催化分解[J].燃料化学学报, 2016, 44(12):1494-1501. doi: 10.3969/j.issn.0253-2409.2016.12.013

    ZHENG Li, WU Cang-cang, XU Xiu-feng. Catalytic decomposition of N2O over Mg-Co and Mg-Mn-Co composite oxides[J]. J Fuel Chem Technol, 2016, 44(12):1494-1501. doi: 10.3969/j.issn.0253-2409.2016.12.013
    [8] 窦喆, 张海杰, 潘燕飞, 徐秀峰. N2O在钾改性Cu-Co尖晶石型复合氧化物上的催化分解[J].燃料化学学报, 2014, 42(2):238-245. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18361.shtml

    DOU Zhe, ZHANG Hai-jie, PAN Yan-fei, XU Xiu-feng. Catalytic decomposition of N2O over potassium-modified Cu-Co spinel oxides[J]. J Fuel Chem Technol, 2014, 42(2):238-245. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18361.shtml
    [9] WANG Y Z, HU X B, ZHENG K, ZHANG H X, ZHAO Y X. Effect of precipitants on the catalytic activity of Co-Ce composite oxide for N2O catalytic decomposition[J]. React Kinet Mech Catal, 2018, 123(2):707-721. doi: 10.1007/s11144-017-1293-9
    [10] ZHANG Y, WANG X D, ZHU Y Y, ZHANG T. Stabilization mechanism and crystallographic sites of Ru in Fe-promoted barium hexaaluminate under high-temperature condition for N2O decomposition[J]. Appl Catal B:Environ, 2013, 129:382-393. doi: 10.1016/j.apcatb.2012.10.001
    [11] 王俊英, 夏海岸, 鞠晓花, 范峰滔, 冯兆池, 李灿.不同类型含铁分子筛上N2O催化分解反应[J].催化学报, 2013, 34(5):876-888. http://d.old.wanfangdata.com.cn/Periodical/cuihuaxb201305008

    WANG Jun-ying, XIA Hai-an, JU Xiao-hua, FAN Feng-tao, FENG Zhao-chi, LI Can. Catalytic performance of different types of iron zeolites in N2O decomposition[J]. Chin J Catal, 2013, 34(5):876-888. http://d.old.wanfangdata.com.cn/Periodical/cuihuaxb201305008
    [12] FRANKEN T, PALKOVITS R. Investigation of potassium doped mixed spinels CuxCo3-xO4 as catalysts for an efficient N2O decomposition in real reaction conditions[J]. Appl Catal B:Environ, 2015, 176-177:298-305. doi: 10.1016/j.apcatb.2015.04.002
    [13] YAN L, REN T, WANG X L, JI D, SUO J S. Catalytic decomposition of N2O over MxCo1-xCo2O4 (M =Ni, Mg) spinel oxides[J]. Appl Catal B:Environ, 2003, 45(2):85-90. doi: 10.1016/S0926-3373(03)00174-7
    [14] TAO F F, SHAN J J, NGUYEN L, WANG Z, ZHANG S, ZHANG L, WU Z, HUANG W, ZENG S, HU P. Understanding complete oxidation of methane on spinel oxides at a molecular level[J]. Nat Commun, 2015, 6:1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a6317a105f406bd3fc56a4615924d5aa
    [15] XIE X W, LI Y, LIU Z Q, HARUTA M, SHWN W J. Low-temperature oxidation of CO catalysed by Co3O4 nanorods[J]. Nature, 2009, 458(7239):746-749. doi: 10.1038/nature07877
    [16] HOU C P, XIA G F, SUN X, WU Y, JIN C, YAN Z N, LI M F, HU Z H, NIE H, LI D D. Thermodynamics of oxidation of an alumina-supported cobalt catalyst by water in F-T synthesis[J]. Catal Today, 2016, 264:91-97. doi: 10.1016/j.cattod.2015.08.042
    [17] KONSOLAKIS M I. Recent advances on nitrous oxide (N2O) decomposition over non-noble metal oxide catalysts:Catalytic performance, mechanistic considerations and surface chemistry aspects[J]. ACS Catal, 2015, 5:6397-6421. doi: 10.1021/acscatal.5b01605
    [18] WANG Y Z, HU X B, ZHENG K, WEI X H, ZHAO Y X. Effect of SnO2 on the structure and catalytic performance of Co3O4 for N2O decomposition[J]. Catal Commun, 2018, 111:70-74. doi: 10.1016/j.catcom.2018.04.004
    [19] YU H B, WANG X P, WU X X, CHEN Y. Promotion of Ag for Co3O4 catalyzing N2O decomposition under simulatedreal reaction conditions[J]. Chem Eng J, 2018, 334:800-808. doi: 10.1016/j.cej.2017.10.079
    [20] YU H B, TURSUN M, WANG X P, WU X X. Pb0.04Co catalyst for N2O decomposition in presence of impurity gases[J]. Appl Catal B:Environ, 2016, 185:110-118. doi: 10.1016/j.apcatb.2015.12.011
    [21] KIM S H, NAM S W, LIM T H, LEE H I. Effect of pretreatment on the activity of Ni catalyst for CO removal reaction by water-gas shift and methanation[J]. Appl Catal B:Environ, 2008, 81(1/2):97-104. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a148f530cd7ee8033e1375d2c1cdb254
    [22] SADYKOV V A, TIKHOV S F, TSYBULYA S V, KRYUKOVA G N, VENIAMINOV S A, KOLOMⅡCHUK V N, BULGAKOV N N, PAUKSHTIS E A, IVANOV V P, KOSHCHEEV S V, ZAIKOVSKⅡ V I, ISUPOVA L A, BURGINA L B. Role of defect structure in structural sensitivity of the oxidation reactions catalyzed by dispersed transition metal oxides[J]. J Mol Catal A:Chem, 2000, 158(1):361-365. doi: 10.1016/S1381-1169(00)00105-9
    [23] YU Y B, TAKEI T, OHASHI H, HE H, ZHANG X L, HARUTA M. Pretreatments of Co3O4 at moderate temperature for CO oxidation at -80℃[J]. J Catal, 2009, 267(2):121-128. doi: 10.1016/j.jcat.2009.08.003
    [24] YANG J, GUO J, WANG Y B. Reduction-oxidation pretreatment enhanced catalytic performance of Co3O4/Al2O3 over CO oxidation[J]. Appl Surf Sci, 2018, 453:330-335. doi: 10.1016/j.apsusc.2018.05.103
    [25] HUSSAIN S T, LARACHI F. Surface modification of supported Ru:Mn/SiO2 Fischer-Tropsch synthesis catalysts[J].J Trace Microprobe Tech, 2002, 20(2):197-209. doi: 10.1081/TMA-120003724
    [26] CAI J, JIANG F, LIU X H. Exploring pretreatment effects in Co/SiO2 Fischer-Tropsch catalysts:Different oxidizing gases applied to oxidation-reduction process[J]. Appl Catal B:Environ, 2017, 210:1-13. doi: 10.1016/j.apcatb.2017.03.036
    [27] 王俊刚, 李德宝, 黄巍, 贾丽涛, 孙志强, 刘斌, 孙予罕.还原-氧化预处理对双孔道钴基催化剂催化性能的影响[J].燃料化学学报, 2012, 40(4):441-446. doi: 10.3969/j.issn.0253-2409.2012.04.010

    WANG Jun-gang, LI De-bao, HUANG Wei, JIA Li-tao, SUN Zhi-qiang, LIU Bing, SUN Yu-han. Influence of reduction-oxidation pretreatment on the performance of bi-modal structure Co-based catalysts in Fischer-Tropsch synthesis[J]. J Fuel Chem Technol, 2012, 40(4):441-446. doi: 10.3969/j.issn.0253-2409.2012.04.010
    [28] SOUZA L K C D, ZAMIAN J R, FILHO G N D R, SOLEDADE L E B, SANTOS I M G D, SOUZA A G, SCHELLER T, ANGELICA R S, COSTA C E F D. Blue pigments based on CoxZn1-xAl2O4 spinels synthesized by the polymeric precursor method[J]. Dyes Pigm, 2009, 81(3):187-192. doi: 10.1016/j.dyepig.2008.09.017
    [29] MAHAMMADUNNISA S K, AKANKSHA T, KRUSHNAMURTY K, SUBRAHMANYAM C H. Catalytic decomposition of N2O over CeO2 supported Co3O4 catalysts[J]. J Chem Sci, 2016, 128(123):1795-1804. http://www.sciencedirect.com/science/article/pii/S0926337307001178
    [30] HOU X D, WANG Y Z, ZHAO Y X. Effect of CeO2 doping on structure and catalytic performance of Co3O4 catalyst for low-temperature CO oxidation[J]. Catal Lett, 2008, 123:321-326. doi: 10.1007/s10562-008-9426-4
    [31] DOW W P, WANG Y P, HUANG T J. Yttria-stabilized zirconia supported copper oxide catalyst.1.Effect of oxygen vacancy of support on copper oxide reduction[J]. J Catal, 1996, 160(2):155-170. doi: 10.1006/jcat.1996.0135
    [32] XIE P F, LUO Y J, MA Z, WANG L Y, HUANG C Y, YUE Y H, HUA W M, GAO Z. CoZSM-11 catalysts for N2O decomposition:Effect of preparation methods and nature of active sites[J]. Appl Catal B:Environ, 2015, 170-171:34-42. doi: 10.1016/j.apcatb.2015.01.027
    [33] CHEN J, SHI W, LI J. Catalytic combustion of methane over cerium-doped cobalt chromite catalysts[J]. Catal Today, 2011, 175(1):216-222. doi: 10.1016/j.cattod.2011.03.061
    [34] LEE Y N, LAGO R M, FIERRO J L G, CORTES V, SAPINA F, MARTINEZ E. Study of ceria-supported nickel catalyst and effect of yttria doping on carbon dioxide reforming of methane[J]. Appl Catal A:Gen, 2001, 218(1/2):69-79. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9cbe5f19c4dc3746099ce0e47711aadb
    [35] WANG K, CAO Y L, HU J D, LI Y Z, XIE J, JIA D Z. Solvent-free chemical approach to synthesize various morphological Co3O4 for CO oxidation[J]. Acs Appl Mater Inter, 2017, 9(19):16128-16137. doi: 10.1021/acsami.7b01142
    [36] XUE L, ZHANG C B, HE H, TERAOKA Y. Catalytic decomposition of N2O over CeO2promoted Co3O4 spinel catalyst[J]. J Chin Rare Earth Soc, 2006, 75(3):167-174. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2ecc9f97610ea3d96b5ae4a3309aeafa
    [37] HUANG C D, ZHU Y Y, WANG X D, LIU X, WANG J H, ZHANG T. Sn promoted BaFeO3-δ catalysts for N2O decomposition:Optimization of Fe active centers[J]. J Catal, 2017, 347:9-20. doi: 10.1016/j.jcat.2016.12.020
    [38] IVANOVA Y A, SUTORMINA E F, ISUPOVA I A, VOVK E I. Catalytic activity of the oxide catalysts based on Ni0.75Co2.25O4 modified with cesium cations in a reaction of N2O decomposition[J]. Kinet Catal, 2017, 58(6):793-799. doi: 10.1134/S002315841705007X
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  235
  • HTML全文浏览量:  60
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-21
  • 修回日期:  2019-02-25
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-04-10

目录

    /

    返回文章
    返回