留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZrO2修饰Al2O3纳米片负载钴催化剂的制备及其费托反应性能研究

郭园园 侯博 王俊刚 贾丽涛 李德宝

郭园园, 侯博, 王俊刚, 贾丽涛, 李德宝. ZrO2修饰Al2O3纳米片负载钴催化剂的制备及其费托反应性能研究[J]. 燃料化学学报(中英文), 2019, 47(5): 540-548.
引用本文: 郭园园, 侯博, 王俊刚, 贾丽涛, 李德宝. ZrO2修饰Al2O3纳米片负载钴催化剂的制备及其费托反应性能研究[J]. 燃料化学学报(中英文), 2019, 47(5): 540-548.
GUO Yuan-yuan, HOU Bo, WANG Jun-gang, JIA Li-tao, LI De-bao. Preparation of ZrO2 modified Al2O3 nano-sheets supported cobalt catalyst and its performance in Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, 2019, 47(5): 540-548.
Citation: GUO Yuan-yuan, HOU Bo, WANG Jun-gang, JIA Li-tao, LI De-bao. Preparation of ZrO2 modified Al2O3 nano-sheets supported cobalt catalyst and its performance in Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, 2019, 47(5): 540-548.

ZrO2修饰Al2O3纳米片负载钴催化剂的制备及其费托反应性能研究

基金项目: 

国家自然科学基金 21872162

国家自然科学基金 U1710104

国家自然科学基金 21703273

国家自然科学基金 21706271

变革性洁净能源关键技术与示范 XDA 21020202

详细信息
  • 中图分类号: O643

Preparation of ZrO2 modified Al2O3 nano-sheets supported cobalt catalyst and its performance in Fischer-Tropsch synthesis

Funds: 

the National Natural Science Foundation of China 21872162

the National Natural Science Foundation of China U1710104

the National Natural Science Foundation of China 21703273

the National Natural Science Foundation of China 21706271

Strategic Priority Research Program of the Chinese Academy of Sciences XDA 21020202

More Information
  • 摘要: 通过水热法合成了Al2O3纳米片(Al2O3-CN),采用浸渍法制备20%(质量分数)钴基催化剂,并应用于费托合成反应。制备的Al2O3-CN(226 m2/g)与商业氧化铝(Al2O3-C,249 m2/g)具有相近的比表面积,但Al2O3-CN孔尺寸分布更加集中。浸渍钴后,与Co/Al2O3-C催化剂相比,Co/Al2O3-CN催化剂表现出较高的还原度及更均匀的钴颗粒粒径分布。因此,Co/Al2O3-CN催化剂表现出更高的CO转化率和低的甲烷选择性。为了进一步提高Co/Al2O3-CN的催化性能,采用不同含量ZrO2对Al2O3-CN进行修饰。表征结果表明,随着ZrO2修饰量的增加,Al2O3-CN载体比表面积变化不明显,孔体积和孔径增大;相对应催化剂的钴颗粒粒径减小,活性位点数目增加。在相同反应条件下,经ZrO2修饰催化剂CO转化率进一步提高,甲烷选择性降低。
  • 图  1  载体的SEM照片

    Figure  1  SEM images of the supports

    (a): Al2O3-C; (b): Al2O3-CN; (c): Al2O3-2.5Zr-CN; (d): Al2O3-5Zr-CN; (e): Al2O3-7.5Zr-CN; (f): Al2O3-10Zr-CN

    图  2  不同反应时间的SEM照片

    Figure  2  SEM images of different reaction times

    (a): 1.5 h; (b): 2 h; (c): 3 h

    图  3  载体N2吸附-脱附等温线及孔径分布

    Figure  3  N2-sorption isotherms and pore size distribution of the supports

    a: Al2O3-C; b: Al2O3-CN; c: Al2O3-2.5Zr-CN; d: Al2O3-5Zr-CN; e: Al2O3-7.5Zr-CN; f: Al2O3-10Zr-CN

    图  4  载体的XRD谱图

    Figure  4  XRD patterns of the supports

    a: Al2O3-C; b: Al2O3-CN; c: Al2O3-2.5Zr-CN; d: Al2O3-5Zr-CN; e: Al2O3-7.5Zr-CN; f: Al2O3-10Zr-CN

    图  5  载体的EDS照片

    Figure  5  EDS photos of the supports

    (a): Al2O3-2.5Zr-CN; (b): Al2O3-10Zr-CN

    图  6  催化剂的XRD谱图

    Figure  6  XRD patterns of the catalysts

    a: Co/Al2O3-C; b: Co/Al2O3-CN; c: Co/Al2O3-2.5Zr-CN; d: Co/Al2O3-5Zr-CN; e: Co/Al2O3-7.5Zr-CN; f: Co/Al2O3-10Zr-CN

    图  7  催化剂的TEM照片

    Figure  7  TEM images of the catalysts

    (a), (d): Co/Al2O3-C; (b), (e): Co/Al2O3-CN; (c), (f): Co/Al2O3-10Zr-CN

    图  8  催化剂的H2-TPR谱图

    Figure  8  H2-TPR profiles of various catalysts

    a: Co/Al2O3-C; b: Co/Al2O3-CN; c: Co/Al2O3-2.5Zr-CN; d: Co/Al2O3-5Zr-CN; e: Co/Al2O3-7.5Zr-CN; f: Co/Al2O3-10Zr-CN

    图  9  催化剂Co 2p XPS谱图

    Figure  9  Co 2p XPS spectra of various catalysts

    a: Co/Al2O3-C; b: Co/Al2O3-CN; c: Co/Al2O3-2.5Zr-CN; d: Co/Al2O3-5Zr-CN; e: Co/Al2O3-7.5Zr-CN; f: Co/Al2O3-10Zr-CN

    表  1  ZrO2在载体中的含量分析

    Table  1  Quantitative analysis of the ZrO2 in the supports

    Catalyst ZrO2 w/%
    XPS ICP
    Al2O3-2.5Zr-CN 11.9 2.2
    Al2O3-5Zr-CN 14.6 5.7
    Al2O3-7.5Zr-CN 15.3 7.5
    Al2O3-10Zr-CN 17.4 10.1
    下载: 导出CSV

    表  2  载体和催化剂的物化性质

    Table  2  Physico-chemical properties of the supports and the catalysts

    Sample ABET/
    (m2·g-1)
    vpore/
    (cm3·g-1)
    dpore/
    nm
    Co crystalline a
    /nm
    H2-TPR reducibilityb/% H2-TPD
    dispersionc
    /%
    Co0accd
    (10-2mol·gcat-1)
    Al2O3-C 249 0.75 10.1 - - - -
    Al2O3-CN 226 0.29 6.3 - - - -
    Al2O3-2.5Zr-CN 186 0.29 7.5 - - - -
    Al2O3-5Zr-CN 179 0.29 6.3 - - - -
    Al2O3-7.5Zr-CN 181 0.26 7.1 - - - -
    Al2O3-10Zr-CN 192 0.28 6.8 - - - -
    Co/Al2O3-C 176 0.49 10.3 9.3 30.1 7.5 5.06
    Co/Al2O3-CN 142 0.25 10.6 10.6 36.0 5.5 3.70
    Co/Al2O3-2.5Zr-CN 138 0.35 11.7 9.9 38.9 6.0 4.04
    Co/Al2O3-5Zr-CN 137 0.35 12.8 9.4 40.3 6.1 4.16
    Co/Al2O3-7.5Zr-CN 146 0.39 15.0 8.9 42.8 6.6 4.50
    Co/Al2O3-10Zr-CN 132 0.31 13.3 8.6 38.9 6.7 4.60
    a: d(Co) = 0.75 d(Co3O4); b: calculated by H2-TPR from 373 to 673 K; c, d: calculated from H2 chemisorption
    下载: 导出CSV

    表  3  催化剂的表面组成

    Table  3  Surface composition of the catalysts

    Catalyst Co 2p3/2 EB/eV ICSS/
    ICo3O4
    Co3O4 cobalt surface species
    Co/Al2O3-C 780.085 781.898 0.862
    Co/Al2O3-CN 780.228 782.070 0.786
    Co/Al2O3-2.5Zr-CN 780.202 782.034 0.736
    Co/Al2O3-5Zr-CN 780.160 782.031 0.716
    Co/Al2O3-7.5Zr-CN 780.109 781.828 0.697
    Co/Al2O3-10Zr-CN 780.039 781.927 0.712
    下载: 导出CSV

    表  4  不同催化剂的费托反应性能

    Table  4  Performance of different catalysts on Fischer-Tropsch synthesis

    Catalyst Temperature t/℃ CO conversion x/% Hydrocarbon selectivity s/% TOF/(10-3·s-1)
    CH4 C2-4 C5+
    Co/Al2O3-C 200 22.8 13.9 12.0 74.1 5.0
    210 49.6 14.1 13.1 72.8 10.7
    Co/Al2O3-CN 200 42.0 8.0 10.0 81.9 13.2
    Co/Al2O3-2.5Zr-CN 200 53.7 7.3 9.2 83.5 16.4
    Co/Al2O3-5Zr-CN 200 58.5 6.8 9.0 84.2 18.2
    Co/Al2O3-7.5Zr-CN 200 79.3 6.5 8.9 84.6 20.7
    Co/Al2O3-10Zr-CN 200 78.9 7.6 8.7 83.7 20.3
    reaction conditions: H2/CO(molar ratio)=2.0, GHSV=1000 h-1, p=2.0 MPa, time on stream=48 h
    下载: 导出CSV
  • [1] MUNNIK P, DE JONGH P E, DE JONG K P. Recent developments in the synthesis of supported catalysts[J]. Chem Rev, 2015, 115(4):6687-6718. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_3e70e18b52824f132575789a5b05aec6
    [2] 孙予罕, 陈建刚, 王俊刚, 贾丽涛, 侯博, 李德宝, 张娟.费托合成钴基催化剂的研究进展[J].催化学报, 2010, 31(8):919-927. http://d.old.wanfangdata.com.cn/Periodical/cuihuaxb201008007

    SUN Yu-han, CHEN Jian-gang, WANG Jun-gang, JIA Li-tao, HOU Bo, LI De-bao, ZHANG Juan. The development of cobalt-based catalysts for fischer-tropsch synthesis[J]. Chin J Catal, 2010, 31(8):919-927. http://d.old.wanfangdata.com.cn/Periodical/cuihuaxb201008007
    [3] KHODAKOV A Y, CHU W, FONGARLAND P. Advances in the development of novel cobalt fischer-tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels[J]. Chem Rev, 2007, 107(5):1692-1744. doi: 10.1021/cr050972v
    [4] STORSÆTER S, TØTDAL B, WALMSLEY J C, TANEM B S, HOLMEN A. Characterization of alumina-, silica-, and titania-supported cobalt Fischer-Tropsch catalysts[J]. J Catal, 2005, 236(1):139-152. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a4d1ef16486bb9da1e2aa82e2c22f67a
    [5] 李金林, 完友军, 张煜华, 熊海峰.不同载体负载的钴基费托合成催化剂的还原过程研究[J].中南民族大学学报, 2007, 26(2):1-6. doi: 10.3969/j.issn.1672-4321.2007.02.001

    LI Jin-lin, WAN You-jun, ZHANG Yu-hua, XIONG Hai-feng. Studies on the reduction process of the supported cobalt catalysis for Fischer-Tropsch Synthesis[J]. J South-Cent Univ Nat(Nat Sci Ed), 2007, 26(2):1-6. doi: 10.3969/j.issn.1672-4321.2007.02.001
    [6] 李家波, 林泉.费托合成钴催化剂载体改性研究进展[J].洁净煤技术, 2015, 21(1):65-68. http://d.old.wanfangdata.com.cn/Periodical/jjmjs201501016

    LI Jia-bo, LIN Quan. Supporter modification of Fischer-Tropsch cobalt catalyst[J]. Clean Coal Technol, 2015, 21(1):65-68. http://d.old.wanfangdata.com.cn/Periodical/jjmjs201501016
    [7] BAO A, LIEW K Y, LI J L. Fischer-Tropsch synthesis on CaO-promoted Co/Al2O3 catalysts[J]. J Mol Catal A:Chem, 2009, 304(1/2):47-51. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=294745cef25aebc9a5d9500787f61030
    [8] YUAN Q, YIN A X, LUO C, SUN L D, ZHANG Y W, DUAN W T, LIU H C, YAN C H. Facile synthesis for ordered mesoporous γ-aluminas with high thermal stability[J]. J Am Chem Soc, 2008, 130(11):3465-3472. doi: 10.1021/ja0764308
    [9] LI X, HAN D Z, XU Y Q, LIU X M, YAN Z F. Bimodal mesoporous γ-Al2O3:A promising support for CoMo-based catalyst in hydrodesulfurization of 4, 6-DMDBT[J]. Mater Lett, 2011, 65(12):1765-1767. doi: 10.1016/j.matlet.2011.03.037
    [10] MARTÍNEZ A, PRIETO G, ROLLAN J. Nanofibrous γ-Al2O3 as support for cobased Fischer-Tropsch catalysts:Pondering the relevance of diffusional and dispersion effects on catalytic performance[J]. J Catal, 2009, 263(2):292-305.
    [11] LIU C C, LI J L, ZHANG Y H, CHEN S F, ZHU J J, LIEW K Y. Fischer-Tropsch synthesis over cobalt catalysts supported on nanostructured alumina with various morphologies[J]. J Mol Catal A:Chem, 2012, 363/364:335-342. doi: 10.1016/j.molcata.2012.07.009
    [12] WANG W W, ZHOU J B, ZHANG Z, YU J G, CAI W Q. Different surfactants-assisted hydrothermal synthesis of hierarchical γ-Al2O3 and its adsorption performances for parachlorophenol[J]. Chem Eng J, 2013, 233:168-175. doi: 10.1016/j.cej.2013.08.029
    [13] NABAHO D, NIEMANTSVERDRIET J W, CLAEYS M, STEEN E. Hydrogen spillover in the Fischer-Tropsch synthesis:An analysis of platinum as a promoter for cobalt-alumina catalysts[J]. Catal Today, 2016, 261:17-27. doi: 10.1016/j.cattod.2015.08.050
    [14] JACOBS G, CHANRY J A, PATTERSON P M, DAS T K, DAVIS B H. Fischer-Tropsch synthesis:Study of the promotion of Re on the reduction property of Co/Al2O3 catalysts by in situ EXAFS/XANES of Co K and Re LⅢ edges and XPS[J]. Appl Catal A:Gen, 2004, 264(2):203-212. doi: 10.1016/j.apcata.2003.12.049
    [15] JONGSOMJIT B, PANPRANOT J, GOODWIN JR J G. Effect of zirconia-modified alumina on the properties of Co/γ-Al2O3 catalysts[J]. J Catal, 2003, 215(1):66-77. http://www.sciencedirect.com/science/article/pii/S0021951702001021
    [16] ZHANG Y H, XIONG H F, LIEW K Y, LI J L. Effect of magnesia on alumina-supported cobalt Fischer-Tropsch synthesis catalysts[J]. J Mol Catal A:Chem, 2005, 237(1/2):172-181. http://www.sciencedirect.com/science/article/pii/S1381116905002980
    [17] DAI X P, YU C C, SHEN S K. Promotion effect of ceria on Fischer-Tropsch synthesis performance over Co/Al2O3 catalyst[J]. Chin J Catal, 2001, 22:104-108. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cuihuaxb200102003
    [18] MA C L, CHANG Y L, YE W C, DUAN L Y, WANG C M. Hexagon γ-alumina nanosheets produced with the assistance of supercritical ethanol drying[J]. J Supercrit Fluids, 2008, 45:112-120. doi: 10.1016/j.supflu.2008.01.001
    [19] LI G C, GUAN L L, LIU Y Q, LIU C G. Template-free solvothermal synthesis of 3D hierarchical nanostructured boehmite assembled by nanosheets[J]. J Phys Chem Solids, 2012, 73:1055-1060. doi: 10.1016/j.jpcs.2012.04.014
    [20] YANG Y F, JIA L T, MENG Y, HOU B, LI D B, SUN Y H. Fischer-Tropsch synthesis over ordered mesoporous carbon supported cobalt catalysts:The role of amount of carbon precursor in catalytic performance[J]. Catal Lett, 2012, 142(2):195-204. doi: 10.1007/s10562-011-0747-3
    [21] KOGELBAUER A, GOODWIN J G, QUKACI R. Ruthenium promotion of Co/Al2O3 Fischer-Tropsch catalysts[J]. J Catal, 1996, 160(1):125-133. https://www.sciencedirect.com/science/article/pii/S002195179690130X
    [22] SEXTON B A, HUGHES A E, TURNEY T W. An XPS and TPR study of the reduction of promoted cobalt-kieselguhr Fischer-Tropsch catalysts[J]. J Catal, 1986, 97(2):390-406. https://www.sciencedirect.com/science/article/pii/0021951786900114
    [23] XIONG H F, ZHANG Y H, LIEW K Y, LI J L. Catalytic performance of zirconium-modified Co/Al2O3for Fischer-Tropsch synthesis[J]. J Mol Catal A:Chem, 2005, 231(1/2):145-151. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-HBKJ200609003054.htm
    [24] CHU W, CHERNAVSKⅡ P A, GENGEMBRE L, PANKINA G A, FONGARLAND P, KHODAKOV A Y. Cobalt species in promoted cobalt alumina-supported Fischer-Tropsch catalysts[J]. J Catal, 2007, 252(2):215-230. doi: 10.1016/j.jcat.2007.09.018
    [25] BEZEMER G L, BITTER J H, KUIPERS H P C E, OOSTERBEEK H, HOLEWIJN J E, XU X D, KAPTEIJN F, JOS VAN DILEN A, DE JONG K P. Cobalt particle size effects in the fischer-tropsch reaction studied with carbon nanofiber supported catalysts[J]. J Am Chem Soc, 2006, 128(12):3956-3964. doi: 10.1021/ja058282w
    [26] DEN BREEJEN J P, RADSTAKE P B, BEZEMER G L, BITTER J H, FRØSRTH V, HOLMEN A, DE JONG K P. On the origin of the cobalt particle size effects in Fischer-Tropsch catalysis[J]. J Am Chem Soc, 2009, 131(20):7197-7203. doi: 10.1021/ja901006x
    [27] JOHNSON G R, BELL A T. Role of ZrO2 in promoting the activity and selectivity of Co-based Fischer-Tropsch synthesis catalysts[J]. ACS Catal, 2016, 6(1):100-114. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=94ec6cdf6cdee2f0ddfcb3df55a7d3d2
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  99
  • HTML全文浏览量:  22
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-16
  • 修回日期:  2019-03-03
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-05-10

目录

    /

    返回文章
    返回