留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

典型烟煤热解机理的反应动力学模拟

张秀霞 吕晓雪 肖美华 林日亿 周志军

张秀霞, 吕晓雪, 肖美华, 林日亿, 周志军. 典型烟煤热解机理的反应动力学模拟[J]. 燃料化学学报(中英文), 2020, 48(9): 1035-1046.
引用本文: 张秀霞, 吕晓雪, 肖美华, 林日亿, 周志军. 典型烟煤热解机理的反应动力学模拟[J]. 燃料化学学报(中英文), 2020, 48(9): 1035-1046.
ZHANG Xiu-xia, LÜ Xiao-xue, XIAO Mei-hua, LIN Ri-yi, ZHOU Zhi-jun. Molecular reaction dynamics simulation of pyrolysis mechanism of typical bituminous coal via ReaxFF[J]. Journal of Fuel Chemistry and Technology, 2020, 48(9): 1035-1046.
Citation: ZHANG Xiu-xia, LÜ Xiao-xue, XIAO Mei-hua, LIN Ri-yi, ZHOU Zhi-jun. Molecular reaction dynamics simulation of pyrolysis mechanism of typical bituminous coal via ReaxFF[J]. Journal of Fuel Chemistry and Technology, 2020, 48(9): 1035-1046.

典型烟煤热解机理的反应动力学模拟

基金项目: 

中央高校基本科研业务费专项资金 18CX02073A

国家自然科学基金资助 51874333

详细信息
  • 中图分类号: TK16;X511

Molecular reaction dynamics simulation of pyrolysis mechanism of typical bituminous coal via ReaxFF

Funds: 

The project was supported by the Fundamental Research Funds for the Central Universities 18CX02073A

National Natural Science Foundation of China 51874333

  • 摘要: 建立合理有效的烟煤大分子模型,采用基于反应力场(Reactive Force Field,ReaxFF)的分子动力学方法模拟1400-2600 K典型烟煤的热解过程,得出产物分布和中间自由基的演变历程。研究表明,随着热解温度的升高,焦炭产量先增加后降低,焦油产量的变化趋势与焦炭相反,热解气产量单调增加。煤在低温下热解主要发生一次反应,生成焦油自由基碎片和小分子气体;高温下焦油碎片的二次反应显著,生成含量较多但数量较少的焦炭及含量与数量较多的小分子气体。2000 K是一次反应向二次反应的温度转折点。在高温热解时,煤中的C与H逐渐迁移到焦炭和焦油中,而含氧官能团较为活跃,O逐渐迁移到热解气中。二次反应阶段,O最活泼,H次之,C最稳定。热解过程中最先产生的气体是H2O;NH3主要来源于二次反应;H2S在二次反应阶段被消耗转化为其他产物;H2产量最多,且随热解温度升高而增加,尤其在二次反应中大量生成,主要源于裂解产生的氢自由基碰撞和芳香结构的缩合。基于ReaxFF模拟结果得到煤热解失重活化能为39.45 kJ/mol。
  • 图  1  煤模型中的小分子结构示意图

    Figure  1  Small molecule structures in coal model

    图  2  优化所得烟煤大分子3D模型(C2136H1884N20O128S8)

    Figure  2  3D model of optimized bituminous coal structure (C2136H1884N20O128S8)

    图  3  不同温度下热解产物中焦炭、焦油、气体的分布

    Figure  3  Distribution of char, tar and gas in pyrolysis products at different temperatures

    图  4  不同温度下分子数量随时间的变化

    Figure  4  Changes in number of molecules with time at different temperatures

    图  5  2600 K下不同热解时刻体系构型快照

    Figure  5  Snapshots of system configuration at different pyrolysis times at 2600 K

    图  6  不同温度分子种类随时间的变化

    Figure  6  Variation of molecular species with time at different temperatures

    图  7  不同温度下焦炭随时间的演化规律

    Figure  7  Evolution of char with time at different temperatures

    图  8  焦炭中C、H、O三种元素组成及变化规律

    Figure  8  Composition and variation of C, H and O elements in char

    图  9  不同温度下焦油随时间的演化规律

    Figure  9  Evolution of tar with time at different temperatures

    图  10  焦油中C、H、O三种元素组成及变化规律

    Figure  10  The composition and variation of C, H and O elements in tar

    图  11  气体小分子释放随热解温度的演化

    Figure  11  Evolution of gaseous small molecule release with pyrolysis temperature

    图  12  不同温度下H2分子数量随时间的变化

    Figure  12  Number of H2 molecules over time at different temperatures

    图  13  H2形成的两种主要途径示意

    Figure  13  Two main ways for the formation of H2

    图  14  1800与2600 K下煤热解的产物分布

    Figure  14  Distribution of pyrolysis products at 1800 K and 2600 K

    图  15  二次反应下焦炭与焦油的C、H、O元素组成及变化规律

    Figure  15  Evolutions of C, H and O elements in char and tar during secondary reactions

    图  16  2600 K温度下典型气体产物随热解时间的变化

    Figure  16  Variation of typical gas products with pyrolysis time at 2600 K

    图  17  基于ReaxFF结果得到的煤热解失重速率常数

    Figure  17  Weight loss rate constant of coal pyrolysis based on ReaxFF results

    表  1  煤模型中添加分子种类及数量

    Table  1  Types and number of molecules in the coal model

    Types of molecules Number of molecules
    Wiser 6
    C16H16O3 2
    C17H24S 2
    C9H12 3
    C28H27OS2 2
    C21H24O3 2
    C5H10O3 2
    C12H16O2 3
    C34H31NO4 1
    C22H26O 1
    -COOH 2
    -CH2- 2
    -CH3 2
    下载: 导出CSV

    表  2  温度对反应速率常数的影响

    Table  2  Effect of temperature on reaction rate constant

    T /K k /(×108,s-1)
    1400 4.85
    1600 6.22
    1800 10.8
    2000 12.54
    下载: 导出CSV
  • [1] 岳光溪, 周大力, 田文龙, 麻林巍, 刘青, 章景皓, 王志轩, 龙辉, 廖海燕.中国煤炭清洁燃烧技术路线图的初步探讨[J].中国工程科学, 2018, 20(3):74-79. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7000853390

    YUE Guang-xi, ZHOU Da-li, TIAN Wen-long, MA Lin-wei, LIU Qing, ZHANG Jing-hao, WANG Zhi-xuan, LONG Hui, LIAO Hai-yan. Preliminary discussion on the technology roadmap of clean coal combustion in China[J]. Eng Sci, 2018, 20(3):74-79. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7000853390
    [2] 陈兆辉, 敦启孟, 石勇, 高士秋.热解温度和反应气氛对输送床煤快速热解的影响[J].化工学报, 2017, 68(4):1566-1573. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxb201704036

    CHEN Zhao-hui, DUN Qi-meng, SHI Yong, GAO Shi-qiu. Effects of pyrolysis temperature and atmosphere on rapid coal pyrolysis in transport bed reactor[J]. CIESC J, 2017, 68(4):1566-1573. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxb201704036
    [3] 常清华, 李宏俊, 崔童敏, 樊文克, 于广锁, 王辅臣.含水量对神府煤快速热解过程气体释放及孔隙结构变化的影响[J].燃料化学学报, 2017, 45(4):427-435. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201704006

    CHANG Qing-hua, LI Hong-jun, CUI Tong-min, FAN Wen-ke, YU Guang-suo, WANG Fu-chen. Effect of moisture content on gas release and pore structure development of wetted Shenfu coal during rapid pyrolysis[J]. J Fuel Chem Technol, 2017, 45(4):427-435. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201704006
    [4] 杨志荣, 孟庆岩, 黄戒介, 王志青, 李春玉, 房倚天.神木煤与不同黏结煤共热解交互作用规律的研究[J].燃料化学学报, 2018, 46(6):641-648. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201806001

    YANG Zhi-rong, MENG Qing-yan, HUANG Jie-jie, WANG Zhi-qing, LI Chun-yu, FANG Yi-tian. Interaction between Shenmu coal and different caking coals during co-pyrolysis[J]. J Fuel Chem Technol, 2018, 46(6):641-648. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201806001
    [5] 赵宁, 刘东, 赵锰锰, 张智琛, 项在金.陕北低阶烟煤回转热解反应特性[J].中国石油大学学报(自然科学版), 2019, 43(3):167-175. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sydxxb201903020

    ZHAO Ning, LIU Dong, ZHAO Meng-meng, ZHANG Zhi-chen, XIANG Zai-jin. Rotary pyrolysis characteristic of low rank coal from northern Shaanxi[J]. J China Univ Pet, 2019, 43(3):167-175. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sydxxb201903020
    [6] HE W J, LIU Z Y, LIU Q Y, CI D H, LIEVENS C, GUO X F. Behaviors of radical fragments in tar generated from pyrolysis of 4 coals[J]. Fuel, 2014, 134:375-380. doi: 10.1016/j.fuel.2014.05.064
    [7] GODDARD W A, MERINOV B, van DUIN A C T, JACOB T, BLANCO M, MOLINERO V, JANG S S, JANG Y H. Multi-paradigm multi-scale simulations for fuel cell catalysts and membranes[J]. Mol Simul, 2006, 32(3/4):251-268. doi: 10.1080/08927020600599709
    [8] ZHANG X X, XIE M, WU H X, LÜ X X, ZHOU Z J. DFT study of the effect of Ca on NO heterogeneous reduction by char[J]. Fuel, 2020, 265:116995. doi: 10.1016/j.fuel.2019.116995
    [9] ZHANG X X, WU H X, XIE M, LÜ X X, ZHOU Z J, LIN R Y. A thorough theoretical exploration of the effect mechanism of Fe on HCN heterogeneous formation from nitrogen-containing char[J]. Fuel, 2020, 280:118662. doi: 10.1016/j.fuel.2020.118662
    [10] 许紫阳, 岳爽, 王春波, 刘瑞琪.焦炭催化CO还原NO的反应机理研究[J].燃料化学学报, 2020, 48(3): 266-274. http://www.cnki.com.cn/Article/CJFDTotal-RLHX20200416006.htm

    XÜ Zi-yang, YUE Shuang, WANG Chun-bo, LIU Rui-qi. Reaction mechanism of NO reduction with CO catalyzed by char[J]. J Fuel Chem Technol, 2020, 48(3): 266-274. http://www.cnki.com.cn/Article/CJFDTotal-RLHX20200416006.htm
    [11] 厉志鹏, 牛胜利, 赵改菊, 韩奎华, 李英杰, 路春美, 程屾. Sr掺杂对CaO(100)表面吸附甲醇影响的分子模拟[J].燃料化学学报, 2020, 48(2):172-178. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb202002006

    LI Zhi-peng, NIU Sheng-li, ZHAO Gai-ju, HAN Kui-hua, LI Ying-jie, LU Chun-mei, CHENG Shen. Molecular simulation study of strontium doping on the adsorption of methanol on CaO (100) surface[J]. J Fuel Chem Technol, 2020, 48(2):172-178. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb202002006
    [12] 邓军, 李亚清, 张玉涛, 杨超萍, 张静, 史学强.羟基(-OH)对煤自燃侧链活性基团氧化反应特性的影响[J].煤炭学报, 2020, 45(1):232-240. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtxb202001024

    DENG Jun, LI Ya-qing, ZHANG Yu-tao, YANG Chao-ping, ZHANG Jing, SHI Xue-qiang. Effects of hydroxyl on oxidation characteristics of side chain active groups in coal[J]. J China Coal Soc, 2020, 45(1):232-240. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtxb202001024
    [13] 侯影飞, 蒋驰, 李力军, 刘恩杰, 林朋飞, 牛青山.分子动力学模拟汽油组分在交联乙基纤维素中的扩散行为[J].中国石油大学学报(自然科学版), 2018, 42(1):171-176. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sydxxb201801022

    HOU Ying-fei, JIANG Chi, LI Li-jun, LIU En-jie, LIN Peng-fei, NIU Qing-shan. Diffusion behavior of gasoline components in crosslinked ethyl cellulose by molecular dynamics simulation[J]. J China Univ Pet, 2018, 42(1):171-176. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sydxxb201801022
    [14] AGRAWALLA S, VAN DUIN A C T. Development and application of a reaxff reactive force field for hydrogen combustion[J]. J Phys Chem A, 2011, 115(6):960-972. doi: 10.1021/jp108325e
    [15] ZHANG L, ZYBIN S V, VAN DUIN A C T, DASGUPTA S, GODDARD W A. Carbon cluster formation during thermal decomposition of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine and1, 3, 5-triamino-2, 4, 6-trinitrobenzene high explosives from Reax FF reactive molecular dynamics simulations[J]. J Phys Chem A, 2009, 113(40):10619-10640. doi: 10.1021/jp901353a
    [16] MONTI S, COROZZI A, FRISTRUP P, JOSHI K L, SHIN Y K, OELSCHLAEGER P, VAN DUIN A C T, BARONE V. Exploring the conformational and reactive dynamics of biomolecules in solution using an extended version of the glycine reactive force field[J]. Phys Chem Chem Phys, 2013, 15(36):15062-15077. doi: 10.1039/c3cp51931g
    [17] SENFTLE T P, HONG S, ISLAM M M, KYLASA S B, ZHENG Y X, SHIN Y K, JUNKERMEIER C, ENGEL-HERBERT R, JANIK M J, AKTULGA H M, VERSTRAELEN T, GRAMA A, VAN DUIN A C T. The ReaxFF reactive force-field:Development, applications and future directions[J]. NPJ Comput Mater, 2016, 2(1):9396-9409. http://www.nature.com/articles/npjcompumats201511
    [18] CASTRO-MARCANO F, RUSSO M F, VAN DUIN A C T, MATHEWS J P. Pyrolysis of a large-scale molecular model for Illinois no. 6 coal using the Reax FF reactive force field[J]. J Anal Appl Pyrolysis, 2014, 109:79-89. http://www.sciencedirect.com/science/article/pii/S0165237014001703
    [19] CASTRO-MARCANO F, KAMAT A M, RUSSO M F, van DUIN A C T, MATHEWS J P. Combustion of an Illinois No. 6 coal char simulated using an atomistic char representation and the Reax FF reactive force field[J]. Combust Flame, 2011, 159(3):1272-1285. http://www.sciencedirect.com/science/article/pii/S0010218011003270
    [20] ZHENG M, LI X X, LIU J, WANG Z, GONG X M, GUO L, SONG W L. Pyrolysis of Liulin coal simulated by GPU-Based ReaxFF MD with cheminformatics analysis[J]. Energy Fuels, 2014, 28(1):522-534. doi: 10.1021/ef402140n
    [21] ZHENG M, YANG P, WANG Z, LI X X, LI G. Capturing the dynamic profiles of products in Hailaer brown coal pyrolysis with reactive molecular simulations and experiments[J]. Fuel, 2020:268. https://www.sciencedirect.com/science/article/pii/S0016236120302854
    [22] GAO M J, LI X X, GUO L. Pyrolysis simulations of Fugu coal by large-scale ReaxFF molecular dynamics[J]. Fuel Process Technol, 2018, 178:197-205. doi: 10.1016/j.fuproc.2018.05.011
    [23] HONG D K, GUO X. Molecular dynamics simulations of Zhundong coal pyrolysis using reactive force field[J]. Fuel, 2017, 210(1):58-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7feb2160eddc37188510a4435e74b876
    [24] HONG D K, LIU L, ZhANG S, GUO X. Effect of cooling rate on the reaction of volatiles from low-rank coal pyrolysis:Molecular dynamics simulations using ReaxFF[J]. Fuel Process Technol, 2018, 178:133-138. doi: 10.1016/j.fuproc.2018.05.033
    [25] 周星宇, 曾凡桂, 相建华, 邓小鹏, 相兴华.马脊梁镜煤有机质大分子模型构建及分子模拟[J].化工学报, 2020, 71(4):1802-1811. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxb202004040

    ZHOU Xing-yu, ZENG Fan-gui, XIANG Jian-hua, DENG Xiao-peng, XIANG Xing-hua. Macromolecular model construction and molecular simulation of organic matter in Majiliang vitrain[J]. CIESC J, 2020, 71(4):1802-1811. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxb202004040
    [26] 高明杰.府谷次烟煤热解的反应分子动力学模拟[D].北京: 中国科学院大学过程工程研究所, 2019. http://cdmd.cnki.com.cn/Article/CDMD-80041-1019113468.htm

    GAO Ming-jie. Pyrolysis simulation of Fugu subbituminous coal by reaxFF molecular dynamics[D]. Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2019. http://cdmd.cnki.com.cn/Article/CDMD-80041-1019113468.htm
    [27] ZHENG M, LI X X, GUO L. Investigation of N behavior during coal pyrolysis and oxidation using ReaxFF molecular dynamics[J]. Fuel, 2018, 233:867-876. doi: 10.1016/j.fuel.2018.06.133
    [28] 高宁, 王一超, 刘育红.丙炔基双酚A醚硼聚合物热解过程的ReaxFF分子动力学模拟[J].化工学报, 2015, 66(4):1557-1564. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxb201504043

    GAO Ning, WANG Yi-chao, LIU Yu-hong. Molecular dynamics simulations of thermal pyrolysis of novel dipropargyl ether of bisphenol A based boron-containing polymer[J]. CIESC J, 2015, 66(4):1557-1564. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxb201504043
    [29] 袁明, 蔺华林, 李克健.煤结构模型及其研究方法[J].洁净煤技术, 2013, 19(2):42-46. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jjmjs201302013

    YUAN Ming, LIN Hua-lin, LI Ke-jian. Coal macromolecular structure models and relevant research methods[J]. Clean Coal Technol, 2013, 19(2):42-46. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jjmjs201302013
    [30] WISER W H, ANDERSON L L, QADER S A, HILL G R. Kinetic relationship of coal hydrogenation, pyrolysis and dissolution[J]. J Chem Technol Biot, 1971, 21(3):82-86. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/jctb.5020210306
    [31] 郑默.基于GPU的煤热解化学反应分子动力学(ReaxFF MD)模拟[D].北京: 中国科学院大学过程工程研究所, 2015.

    ZHENG Mo. Coal pyrolysis simulation by GPU-based reactive force field molecular dynamics (ReaxFF MD)[D]. Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2015.
    [32] MIURA K, SHIMADA M, MAE K, SOCK H Y. Extraction of coal below 350℃ in flowing non-polar solvent[J]. Fuel, 2001, 80(11):1573-1582. doi: 10.1016/S0016-2361(01)00036-9
    [33] GONG X M, WANG Z, LI S G, SONG W L, LIN W G. Coal pyrolysis in a laboratory-scale two-stage reactor:Catalytic upgrading of pyrolytic vapors[J]. Chem Eng Technol, 2014, 37(12). 2135-2142. doi: 10.1002/ceat.201300748
    [34] GONG X M, WANG Z, DENG S W, LI S G, SONG W L, LIN W G. Impact of the temperature, pressure, and particle size on tar composition from pyrolysis of three ranks of Chinese coals[J]. Energy Fuels, 2014, 28(8):4942-4948. doi: 10.1021/ef500986h
    [35] ZHENG M, LI X X, LIU J, GUO L. Initial chemical reaction simulation of coal pyrolysis via ReaxFF molecular dynamics[J]. Energy Fuels, 2013, 27(6):2942-2951. doi: 10.1021/ef400143z
    [36] DONG T, MURATA S, MIURA M, NOMURA M, NAKAMURA K. Computer-aided molecular design study of coal model molecules. 3. Density simulation for model structures of bituminous Akabira coal[J]. Energy Fuels, 2002, 7(6):1123-1127. doi: 10.1021/ef00042a061
    [37] NAKAMURA K, MURATA S, NOMURA M. CAMD study of coal model molecules. 1. Estimation of physical density of coal model molecules[J]. Energy Fuels, 2002, 7(3):347-350. doi: 10.1021/ef00039a002
    [38] VAN DUIN A C T, DASGUPTA S, LORANT F, GODDARD W A. ReaxFF:A reactive force field for hydrocarbons[J]. J Phys Chem A, 2001, 105(41):9396-9409. doi: 10.1021/jp004368u
    [39] 洪迪昆.准东煤热解及富氧燃烧的反应分子动力学研究[D].武汉: 华中科技大学, 2018. http://cdmd.cnki.com.cn/Article/CDMD-10487-1019819200.htm

    HONG Di-kun. Study on the pyrolysis and oxy-fuel combustion of Zhundong coal using reactive molecular dynamics simulations[D]. Wuhan: Huazhong University of Science and Technology, 2018. http://cdmd.cnki.com.cn/Article/CDMD-10487-1019819200.htm
    [40] 洪迪昆, 操政, 杨昌敏, 刘亮, 郭欣.钙催化苯酚反应的分子动力学模拟[J].化工学报, 2019, 70(5):1788-1794. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxb201905014

    HONG Di-kun, CAO Zheng, YANG Chang-min, LIU Liang, GUO Xin. Catalytic effect of calcium on reaction of phenol using reactive molecular dynamics simulation[J]. CIESC J, 2019, 70(5):1788-1794. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxb201905014
    [41] ZHENG M, LI X X, WANG M J, GUO L. Dynamic profiles of tar products during Naomaohu coal pyrolysis revealed by large-scale reactive molecular dynamic simulation[J]. Fuel, 2019, 253:910-920. doi: 10.1016/j.fuel.2019.05.085
    [42] 洪迪昆, 刘亮, 操政, 杨昌敏, 郭欣.五彩湾煤热解的反应分子动力学研究[J].煤炭学报, 2019, 44(S1):271-277. http://www.cqvip.com/QK/96550X/2019S01/7100718148.html

    HONG Di-kun, LIU Liang, CAO Zheng, YANG Chang-min, GUO Xin. Molecular dynamics simulation of Wucaiwan coal pyrolysis via ReaxFF[J]. J China Coal Soc, 2019, 44(S1):271-277. http://www.cqvip.com/QK/96550X/2019S01/7100718148.html
    [43] 雷昭, 杨鼎, 张云鹤, 崔平.基于分子模拟技术煤焦分子模型结构[J].燃料化学学报, 2017, 45(7):769-779.

    LEI Zhao, YANG Ding, ZHANG Yun-He, CUI Ping. Constructions of coal and char molecular models based on the molecular simulation technology[J]. J Fuel Chem Technol, 2017, 45(7):769-779.
    [44] HUMPHREY W, DALKE A, SCHULTEN K. VMD:visual molecular dynamics[J], J Mol Graphics Modell, 1996, 14:33-38. doi: 10.1016/0263-7855(96)00018-5
    [45] SOLOMON P R, FLETCHER T H, PUGMIRE R J. Progress in coal pyrolysis[J]. Fuel, 1993, 72(5):587-597. doi: 10.1016/0016-2361(93)90570-R
    [46] 王连聪, 梁运涛.煤无氧升温中CO产生及变化规律的光谱分析[J].煤炭学报, 2017, 42(7):1790-1794. http://www.cnki.com.cn/Article/CJFDTotal-MTXB201707019.htm

    WANG Lian-cong, LIANG Yun-tao. Spectral analysis on laws of generation and variability of CO during oxygen-free programmed temperature of coal[J]. J China Coal Soc, 2017, 42(7):1790-1794. http://www.cnki.com.cn/Article/CJFDTotal-MTXB201707019.htm
    [47] LIU J X, JIANG X M, SHEN J, ZHANG H. Pyrolysis of superfine pulverized coal. Part 1. Mechanisms of methane formation[J]. Energ Convers Manage, 2014, 87:1027-1038. doi: 10.1016/j.enconman.2014.07.053
    [48] DOMAZETIS G, JAMES B D. Molecular models of brown coal containing inorganic species[J]. Org Geochem, 2007, 37(2):244-259. http://www.sciencedirect.com/science/article/pii/S0146638005002111
    [49] 毛宁, 王强, 杨妍, 徐敦信, 冯炜, 张金鹏, 白红存, 郭庆杰.基于显微组分化学键特征的宁夏庆华煤热解特性及动力学分析[J].化工学报, 2020, 71(2):811-820+903. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxb202002038

    MAO Ning, WANG Qiang, YANG Yan, XU Dun-xin, FENG Wei, ZHANG Jin-peng, BAI Hong-cun, GUO Qing-jie. Pyrolysis characteristics and kinetics analysis of Qinghua coal, Ningxia based on chemical bonding characteristics of macerals[J]. CIESC J, 2020, 71(2):811-820+903. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxb202002038
    [50] 吴洁, 狄佐星, 罗明生, 王亚涛, 丁肖肖, 李洪娟. N2气氛下温度和压力对煤热解的影响[J].化工进展, 2019, 38(S1): 116-121. http://www.cnki.com.cn/Article/CJFDTotal-HGJZ2019S1017.htm

    WU Jie, DI Zuo-xing, LUO Ming-sheng, WANG Ya-tao, DING Xiao-xiao. Study of the effects of temperature and pressure on the coal pyrolysis in the atmosphere of N2[J]. Chem Ind Eng Prog, 2019, 38(S1): 116-121. http://www.cnki.com.cn/Article/CJFDTotal-HGJZ2019S1017.htm
    [51] LIU Z T, ZHAN J H, LAI D G, ZUO M H, LIU X X. Effects of different temperature chars on distribution of pyrolysates for Naomaohu coal[J]. J Therm Anal Calorim, 2020. http://www.researchgate.net/publication/342423526_Effects_of_different_temperature_chars_on_distribution_of_pyrolysates_for_Naomaohu_coal
    [52] 邓一英.平朔煤的热解试验研究[J].洁净煤技术, 2008, 14(2):56-58, 66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jjmjs200802015

    DENG Yi-ying. The pyrolysis experiment study of pingshuo coal[J]. Clean Coal Technology, 2008, 14(2):56-58, 66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jjmjs200802015
    [53] SOLOMON P R, SERIO M A, SUUBERG E M. Coal pyrolysis:Experiments, kinetic rates and mechanisms[J]. Prog Energy Combust Sci, 1992, 18(2):133-220. doi: 10.1016/0360-1285(92)90021-R
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  477
  • HTML全文浏览量:  176
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-03
  • 修回日期:  2020-08-10
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-09-10

目录

    /

    返回文章
    返回