留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

垃圾衍生燃料热解半焦气化过程中HCl与H2S析出规律

杨文申 林均衡 阴秀丽 吴创之

杨文申, 林均衡, 阴秀丽, 吴创之. 垃圾衍生燃料热解半焦气化过程中HCl与H2S析出规律[J]. 燃料化学学报(中英文), 2019, 47(1): 121-128.
引用本文: 杨文申, 林均衡, 阴秀丽, 吴创之. 垃圾衍生燃料热解半焦气化过程中HCl与H2S析出规律[J]. 燃料化学学报(中英文), 2019, 47(1): 121-128.
YANG Wen-shen, LIN Jun-heng, YIN Xiu-li, WU Chuang-zhi. Release of HCl and H2S during gasification of refuse derived-fuel chars[J]. Journal of Fuel Chemistry and Technology, 2019, 47(1): 121-128.
Citation: YANG Wen-shen, LIN Jun-heng, YIN Xiu-li, WU Chuang-zhi. Release of HCl and H2S during gasification of refuse derived-fuel chars[J]. Journal of Fuel Chemistry and Technology, 2019, 47(1): 121-128.

垃圾衍生燃料热解半焦气化过程中HCl与H2S析出规律

基金项目: 

国家重点研发计划 2016YFE0203300

广东省自然科学基金项目 2017B030308002

广州市科技计划项目 201707010242

详细信息
    通讯作者:

    YIN Xiu-li, E-mail: xlyin@ms.giec.ac.cn

  • 中图分类号: TK6

Release of HCl and H2S during gasification of refuse derived-fuel chars

Funds: 

the National Key R&D Program of China 2016YFE0203300

the Guangdong Natural Science Foundation 2017B030308002

Science and Technology Program of Guangzhou 201707010242

  • 摘要: 通过水平管式气化炉和化学吸收法,对比研究了矿化垃圾热解半焦(ARC)和常规垃圾热解半焦(NRC)在水蒸气和CO2气化过程中腐蚀性气体(HCl和H2S)的析出特性,考察了气化温度、气化介质类型和流量对腐蚀性气体析出特性的影响。当气化温度升至950℃,ARC在水蒸气气化过程中的碳气化率、HCl和H2S产率分别为66.1%、100%和74.9%,而其在CO2气化过程中的碳气化率、HCl和H2S产率分别为77.8%、100%和2.9%;NRC在水蒸气气化过程中的碳气化率、HCl和H2S产率分别为98.8%、100%和53.7%,而其在CO2气化过程中的碳气化率、HCl和H2S产率分别为100%、96.2%和10.3%。以NRC为原料,考察了水蒸气和CO2流量对其HCl和CO2析出特性的影响。NRC的HCl和H2S产率均随水蒸气流量增加而增加,但当水碳比大于等于3.3时,其促进作用不再明显。NRC的HCl产率随CO2流量的增加而增加,而H2S产率随CO2流量的增加而减小。
  • 图  1  半焦气化实验装置示意图

    Figure  1  Schematic diagram of gasification system

    1: gas flowmeter; 2: resistance furnace; 3: PID temperature controller; 4: thermo-couple; 5: porcelain boat; 6: chemical absorption system

    图  2  水蒸气气化过程中NRC和ARC的碳转化率

    Figure  2  Carbon conversion of ARC and NRC in steam gasification

    图  3  水蒸气气化过程中NRC和ARC的HCl产率

    Figure  3  HCl yield of NRC and ARC in steam gasification

    图  4  水蒸气气化过程中NRC和ARC的H2S产率

    Figure  4  H2S yield of ARC and NRC in steam gasification

    图  5  CO2气化过程中ARC和NRC的碳转化率

    Figure  5  Carbon conversion of ARC and NRC in CO2 gasification

    图  6  CO2气化过程中ARC和NRC的HCl产率

    Figure  6  HCl yield of ARC and NRC in CO2 gasification

    图  7  CO2气化过程中ARC和NRC的H2S产率

    Figure  7  H2S yield of ARC and NRC in CO2 gasification

    图  8  CO2气氛、950 ℃下NRC气化析出H2S和COS的TG-MS曲线

    Figure  8  Evolution of H2S and COS in CO2 gasification at 950 ℃

    图  9  不同水蒸气流量下HCl与H2S产率变化

    Figure  9  Yield of HCl and H2S in different flow rates of steam

    图  10  不同CO2流量下HCl与H2S产率变化

    Figure  10  Yield of HCl and H2S in different flow rates of CO2

    表  1  ARDF和NRDF的元素分析与工业分析

    Table  1  Ultimate and proximate analyses of ARDF and NRDF

    Sample Ultimate analysis wdb*/%
    C H N total S inorganic sulfur total Cl inorganic Cl
    ARDF 35.95 2.56 0.85 0.65 0.103 0.95 0.46
    NRDF 57.26 6.23 0.87 0.15 0.007 1.37 0.14
    *: dried basis
    下载: 导出CSV

    表  2  气化半焦原料的元素分析

    Table  2  Ultimate analysis of raw material in char gasification experiment

    Sample Ultimate analysis wdb*/%
    C H N total S inorganic sulfur total Cl inorganic Cl
    ARC 37.78 0.62 0.44 0.99 0.784 1.77 1.23
    NRC 60.09 0.73 0.99 0.14 0.086 2.34 1.49
    *: dried basis
    下载: 导出CSV
  • [1] "十三五"全国城镇生活垃圾无害化处理设施建设规划[R].北京: 国家发展改革委住房城乡建设部, 2016.

    "The 13th Five-Year Plan" construction planning for harmless treatment facilities of national municipal waste[R]. Beijing: Ministry of Housing and Urban-Rural Development of the People's Republic of China, 2016.
    [2] 赵由才, 柴晓利, 牛冬杰.矿化垃圾基本特性研究[J].同济大学学报(自然科学版), 2006, 34(10):1360-1364. doi: 10.3321/j.issn:0253-374X.2006.10.017

    ZHAO You-cai, CHAI Xiao-li, NIU Dong-jie. Characteristics of aged refuse in closed refuse landfill in Shanghai[J]. J Tongji Univ (Nat Sci)), 2006, 34(10):1360-1364. doi: 10.3321/j.issn:0253-374X.2006.10.017
    [3] ROTHEUT M, QUICKER P. Energetic utilisation of refuse derived fuels from landfill mining[J]. Waste Manage, 2017, 62:101-117. doi: 10.1016/j.wasman.2017.02.002
    [4] LI G K, HOU F, GUO Z, YAO G, SANG N. Analyzing nutrient distribution in different particle-size municipal aged refuse[J]. Waste Manage, 2011, 31(11):2203-2207. doi: 10.1016/j.wasman.2011.06.010
    [5] COMMISSION E. Council Directive 99/31/EC of 26 April 1999 on the landfill of waste (Landfill Directive)[EB]. 1999.
    [6] BOSMANS A, VANDERREYDT I, GEYSEN D, HELSEN L. The crucial role of Waste-to-Energy technologies in enhanced landfill mining:A technology review[J]. J Clean Prod, 2013, 55(14):10-23. http://www.cabdirect.org/abstracts/20133320582.html
    [7] ROTHEUT M, QUICKER P. Energetic utilization of refuse derived fuels from landfill mining[J]. Waste Mange, 2017, 62:101-117. doi: 10.1016/j.wasman.2017.02.002
    [8] CHALERMCHAROENRAT S, LAOHALIDANOND K, KERDSUWAN S. Optimization of combustion behavior and producer gas quality from reclaimed landfill through highly densify RDF-gasification[J]. Energy Procedia, 2015, 79:321-326. doi: 10.1016/j.egypro.2015.11.496
    [9] 袁浩然, 鲁涛, 熊祖鸿, 黄宏宇, 小林敬幸, 陈勇, 黎志强.城市生活垃圾热解气化技术研究进展[J].化工进展, 2012, 31(2):421-427. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200023127

    YUAN Hao-ran, LU Tao, XIONG Zu-hong, HUANG Hong-yu, KOBAYASHI Noriyuki, CHEN Yong, LI Zhi-qiang. Advance in pyrolysis and gasification of municipal solid waste study[J]. Chem Ind Eng Prog, 2012, 31(2):421-427. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200023127
    [10] HJELMAR O. Disposal strategies for municipal solid waste incineration residues[J]. J Hazard Mater, 1996, 47(1/3):345-368. http://www.sciencedirect.com/science/article/pii/0304389495001115
    [11] MAKEN S, JANG S H, PARK J W, PARK J W, SONG H C, LEE S, CHANG E H. Vitrification of MSWI fly ash using Brown's gas and fate of heavy metals[J]. J Sci Ind Res, 2005, 64(3):198-204.
    [12] TUPPURAINEN K, HALONEN I, RUOKOJARVI P, TARHANEN J, RUUSKANEN J. Formation of PCDDs and PCDFs in municipal waste incineration and its inhibition mechanisms:A review[J]. Chemosphere, 1998, 36(7):1493-1511. doi: 10.1016/S0045-6535(97)10048-0
    [13] SENNECA O. Kinetics of pyrolysis, combustion and gasification of three biomass fuels[J]. Fuel Process Technol, 2007, 88(1):87-97. doi: 10.1016/j.fuproc.2006.09.002
    [14] SHUIT S H, TAN K T, LEE K T, KAMARUDDIN A H. Oil palm biomass as a sustainable energy source:A Malaysian case study[J]. Energy, 2009, 34(9):1225-1235. doi: 10.1016/j.energy.2009.05.008
    [15] PAN T J, GESMUNDO F, NIU Y. Corrosion behavior of three iron-based model alloys in reducing atmospheres containing HCl and H2S at 600℃[J]. Corros Sci, 2007, 49(3):1362-1377. doi: 10.1016/j.corsci.2006.06.014
    [16] HU H, FANG Y, LIU H, YU R, LUO G, LIU W, LI A, YAO H. The fate of sulfur during rapid pyrolysis of scrap tires[J]. Chemosphere, 2014, 97(1):102-107. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6bc4663d9c73f5d9a7e7e41b8c4bd721
    [17] YUAN G, CHEN D, YIN L, WANG Z, ZHAO L, WANG J Y. High efficiency chlorine removal from polyvinyl chloride (PVC) pyrolysis with a gas-liquid fluidized bed reactor[J]. Waste Manage, 2014, 34(6):1045-1050. doi: 10.1016/j.wasman.2013.08.021
    [18] ZHU H M, JIANG X G, YAN J H, CHI Y, CEN K F. TG-FTIR analysis of PVC thermal degradation and HCl removal[J]. J Anal Appl Pyrolysis, 2008, 82(1):1-9. doi: 10.1016/j.jaap.2007.11.011
    [19] LANE D J, VAN EYK P J, ASHMAN P J, KWONG C W, DE NYS R, ROBERTS D A, COLE A J, LEWIS D M. Release of Cl, S, P, K, and Na during thermal conversion of algal biomass[J]. Energy Fuels, 2015, 29(4):2542-2554. doi: 10.1021/acs.energyfuels.5b00279
    [20] 林均衡, 杨文申, 阴秀丽, 吴创之.矿化垃圾衍生燃料热解过程HCl与H2S析出规律[J].燃料化学学报, 2018, 46(2):152-159. doi: 10.3969/j.issn.0253-2409.2018.02.004

    LIN Jun-heng, YANG Wen-shen, YIN Xiu-li, WU Chuang-zhi. Release of HCl and H2S during pyrolysis of aged refuse derived-fuels[J]. J Fuel Chem Technol, 2018, 46(2):152-159. doi: 10.3969/j.issn.0253-2409.2018.02.004
    [21] 阮松宾.广西县级城镇生活垃圾处理方式和工艺探讨[J].环境卫生工程, 2008, 16(1):27-30. doi: 10.3969/j.issn.1005-8206.2008.01.008

    RUAN Song-bin. Discussion about means and process of country towns domestic waste treatment in Guangxi[J]. Environ Sanit Eng, 2008, 16(1):27-30. doi: 10.3969/j.issn.1005-8206.2008.01.008
    [22] HU H, FANG Y, LIU H, YU R, LUO G, LIU W, LI A, YAO H. The fate of sulfur during rapid pyrolysis of scrap tires[J]. Chemosphere, 2014, 97(1):102-107. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6bc4663d9c73f5d9a7e7e41b8c4bd721
    [23] YU J, SUN L, MA C, QIAO Y, YAO H. Thermal degradation of PVC:A review[J]. Waste Manage, 2016, 48:300-314. doi: 10.1016/j.wasman.2015.11.041
    [24] 杜耀, 方圆, 沈东升, 龙於洋.填埋场中硫化氢恶臭污染防治技术研究进展[J].农业工程学报, 2015, 31(1):269-275. http://d.old.wanfangdata.com.cn/Periodical/nygcxb2015z1032

    DU Yao, FANG Yuan, SHEN Dong-sheng, LONG Yu-yang. Review on pollution control technologies of hydrogen sulfide odor in landfill[J]. Trans Chin Soc Agric Eng, 2015, 31(1):269-275. http://d.old.wanfangdata.com.cn/Periodical/nygcxb2015z1032
    [25] RECARI J, BERRUECO C, ABELLÍ S, MONTANÉ D, FARRIOL X. Gasification of two solid recovered fuels (SRFs) in a lab-scale fluidized bed reactor:Influence of experimental conditions on process performance and release of HCl, H2S, HCN and NH3[J]. Fuel Process Technol, 2016, 142:107-114. doi: 10.1016/j.fuproc.2015.10.006
    [26] DUAN L, ZHAO C, ZHOU W, QU C, CHEN X. Investigation on coal pyrolysis in CO2 atmosphere[J]. Energy Fuels, 2009, 23(7):3826-3830. doi: 10.1021/ef9002473
    [27] FRIGGE L, ELSERAFI G, STROHLE J, EPPLE B. Sulfur and chlorine gas species formation during coal pyrolysis in nitrogen and carbon dioxide atmosphere[J]. Energy Fuels, 2016, 30(9):7713-7720. doi: 10.1021/acs.energyfuels.6b01080
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  291
  • HTML全文浏览量:  57
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-07
  • 修回日期:  2018-11-23
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-01-10

目录

    /

    返回文章
    返回