留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

富氧条件下生物质基活性炭负载钾催化剂高选择性还原氮氧化物

束韫 张凡 王凡 王红梅 王洪昌

束韫, 张凡, 王凡, 王红梅, 王洪昌. 富氧条件下生物质基活性炭负载钾催化剂高选择性还原氮氧化物[J]. 燃料化学学报(中英文), 2017, 45(6): 747-754.
引用本文: 束韫, 张凡, 王凡, 王红梅, 王洪昌. 富氧条件下生物质基活性炭负载钾催化剂高选择性还原氮氧化物[J]. 燃料化学学报(中英文), 2017, 45(6): 747-754.
SHU Yun, ZHANG Fan, WANG Fan, WANG Hong-mei, WANG Hong-chang. Biomass-derived activated carbon supported potassium catalyst for reduction of NOx in excess oxygen with higher selectivity[J]. Journal of Fuel Chemistry and Technology, 2017, 45(6): 747-754.
Citation: SHU Yun, ZHANG Fan, WANG Fan, WANG Hong-mei, WANG Hong-chang. Biomass-derived activated carbon supported potassium catalyst for reduction of NOx in excess oxygen with higher selectivity[J]. Journal of Fuel Chemistry and Technology, 2017, 45(6): 747-754.

富氧条件下生物质基活性炭负载钾催化剂高选择性还原氮氧化物

基金项目: 

国家自然科学基金 21507119

青海省科技支撑计划 2012-J-144

详细信息
    通讯作者:

    束韫, Tel:010-84934516, E-mail:shuyun@craes.org.cn

  • 中图分类号: X51

Biomass-derived activated carbon supported potassium catalyst for reduction of NOx in excess oxygen with higher selectivity

Funds: 

the National Natural Science Foundation of China 21507119

the Key Technology Research and Development Program of Qinghai Province 2012-J-144

  • 摘要: 研究了富氧环境中生物质基活性炭负载钾催化剂选择性还原氮氧化物的性能。结果表明,与煤基(褐煤)活性炭负载钾催化剂相比,生物质基(木屑)活性炭负载钾催化剂表现出高选择性还原NO能力,在2 h恒温稳态实验过程中能够保持80%的NO还原效率,而C-O2反应活性仅为18%。X射线衍射、比表面积、X射线光电子能谱以及程序升温脱附实验表征结果显示,生物质基活性炭负载钾催化剂优异的选择性还原NO性能应归因于炭表面钾物种的高度分散性,这与催化剂的高比表面积以及大量的表面氧基团有关。另外,生物质基炭材料还原NO反应产物中具有较高的CO2选择性。
  • 图  1  实验装置示意图

    Figure  1  Schematic diagram of the experimental setup

    1: N2; 2: NO; 3: O2; 4: mass flow controller;5: electric furnace; 6: fixed bed reactor; 7: catalyst; 8: temperature controller; 9: gas analyzer

    图  2  400℃时不同样品的恒温稳态脱硝活性

    Figure  2  Isothermal NO reduction activity at 400℃ with different samples

    ■: MAC; ●: DAC; ▲: YAC; ◆: HACreaction conditions: [NO] = 0.1%, [O2] = 5%, t=400℃, N2 balance and GHSV = 20000h-1

    图  3  两种不同催化剂的CO2-TPD和CO-TPD谱图

    Figure  3  CO2-TPD and CO-TPD profiles on two different catalysts

    图  4  程序升温暂态反应MAC、MAC-K和HAC-K

    Figure  4  Temperature programmed reaction with MAC(a), MAC-K(b) and HAC-K(c)

    reaction conditions: [NO] = 0.1%, [O2] = 5%, N2 balance and GHSV = 20000h-1■: NO; □: O2; ●: CO2; ○: CO

    图  5  350℃时催化剂MAC-K和HAC-K的恒温稳态脱硝活性NO和O2转化率,CO2和CO排放

    中文注解

    Figure  5  Isothermal NO reduction activity at 350℃ with MAC-K and HAC, NO and O2 conversion (a), CO2 and CO emission (b)

    a: MAC-K-NO; b: HAC-K-NO; c: MAC-K-O2; d: HAC-K-O2; e: MAC-K-CO2; f: HAC-K-CO2; g: MAC-K-CO; h: HAC-K-COreaction conditions: [NO] = 0.1%, [O2] = 5%, N2 balance and GHSV = 20000h-1

    图  6  不同催化剂的XRD谱图

    Figure  6  X-ray diffraction patterns for different catalyst

    a: MAC-K; b: HAC-K

    表  1  实验原料的工业分析及元素分析

    Table  1  Proximate and ultimate analyses of raw materials for the experiment

    表  2  催化剂和活性炭的特性表征

    Table  2  Characteristics of catalysts and carbon supporting

    表  3  300、325、350℃时测试样品在恒温稳态反应实验中的反应数据与选择性

    Table  3  Reaction data and selectivity for tested samples in isothermal reactions at 300, 325 and 350℃

  • [1] LIU C, SHI J W, GAO C, NIU C M. Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3:A review[J]. Appl Catal A:Gen, 2016, 522:54-69. doi: 10.1016/j.apcata.2016.04.023
    [2] 金云舟, 钱君律, 伍艳辉.溶胶-凝胶法制备催化剂的研究进展[J].工业催化, 2006, 14(11):60-63. doi: 10.3969/j.issn.1008-1143.2006.11.015

    JIN Yun-zhou, QIAN Jun-lv, WU Yan-hui. Advances in preparation of catalysts by sol-gel method[J]. Ind Catal, 2006, 14(11):60-63. doi: 10.3969/j.issn.1008-1143.2006.11.015
    [3] COSTA C N, EFSTATHIOU A M. Mechanistic aspects of the H2-SCR of NO on a novel Pt/MgO-CeO2 catalyst[J]. J Phys Chem C, 2007, 111(7):3010-3020. doi: 10.1021/jp064952o
    [4] HEO L, KIM M K, SUNG S, NAM I, OLSON K L, LI W. Combination of photocatalysis and HC/SCR for improved activity and durability of DeNOx catalysts[J]. Environ Sci Technol, 2013, 47(8):3657-3664. doi: 10.1021/es304188k
    [5] 方晓晴, 范垂钢, 都林, 宋文立, 林伟刚, 李松庚.煤焦直接还原脱除烟道气氮氧化物[J].化工学报, 2014, 65(6):2249-2255. http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201406042.htm

    FANG Xiao-qing, FAN Chui-gang, DU Lin, SONG Wen-li, LIN Wei-gang, LI Song-geng. Reduction of nitric oxide in flue gas by coal char[J]. CIESC J, 2014, 65(6):2249-2255. http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201406042.htm
    [6] ILLÁN-GÓMEZ M J, SALINAS-MARTINEZ C, LINARES-SOLANO A. Potassium-containing coal chars as catalysts for NOx reduction in the presence of oxygen[J]. Energy Fuels, 1998, 12:1256-1264. doi: 10.1021/ef980067w
    [7] BUENO-LÓPEZ A, GARCÍA-GARCÍA A, ILLÁN-GÓMEZ M J, LINARES-SOLANO A. Advances in potassium catalyzed NOx reduction by carbon materials:An overview[J]. Ind Eng Chem Res, 2007, 46(12):3891-3907. doi: 10.1021/ie061005t
    [8] KORDYLEWSKI W, ZACHARCZUK W, HARDY T. The effect of the calcium in lignite on its effectiveness as a reburn fuel[J]. Fuel, 2005, 84(9):1110-1115. doi: 10.1016/j.fuel.2004.10.014
    [9] ILLÁN-GÓMEZ M J, RAYMUNDO-PINERO E, GARCÍA-GARCÍA A, LINARES-SOLANO A, SALINAS-MARTINEZ C. Catalytic NOx reduction by carbon supporting metals[J]. Appl Catal B:Environ, 1999, 20(4):267-275. doi: 10.1016/S0926-3373(98)00119-2
    [10] YAMASHITA H, YAMADA H, TOMITA A. Reaction of nitric oxide with metal-loaded carbon in the presence of oxygen[J]. Appl Catal, 1991, 78(2):L1-L6. https://www.researchgate.net/publication/250691877_Reaction_of_nitric_oxide_with_metal-loaded_carbon_in_the_presence_of_oxygen
    [11] IMAI J, SOUMA M, SUZUKI T, RADOVIC L C. Reaction of dimerized NOx (x=1 or 2) with sulfur dioxide in a restricted slit-shaped micropore space[J]. J Phys Chem, 1991, 95:9955-9960. doi: 10.1021/j100177a064
    [12] GARCÍA-GARCÓA A, CHINCHÓN-YEPES S, LINARES-SOLANO A, SALINAS-MARTINEZ C. NO reduction by potassium-containing coal briquettes. Effect of mineral matter content and coal rank[J]. Energy Fuels, 1997, 11(2):292-298. doi: 10.1021/ef9601327
    [13] ILLÁN-GÓMEZ M J, LINARES-SOLANO A, SALINAS-MARTINEZ C. NO reduction by activated carbon. 6. catalysis by transition metals[J]. Energy Fuels, 1995, 9(6):976-983. doi: 10.1021/ef00054a007
    [14] 张军, 林晓芬, 印佳敏, 范志林, 徐益谦.生物质焦脱硫性能实验研究[J].工程热物理学报, 2005, 26(3):537-539. http://www.cnki.com.cn/Article/CJFDTOTAL-GCRB200503053.htm

    ZHANG Jun, LIN Xiao-fen, YIN Jia-min, FAN Zhi-lin, XU Yi-qian. Experimental research on the desulphurization performance of biomass char[J]. J Eng Therm, 2005, 26(3):537-539. http://www.cnki.com.cn/Article/CJFDTOTAL-GCRB200503053.htm
    [15] 卢平, 陆飞, 树童, 王秦超.生物质热解焦吸附模拟烟气中SO2和NO的实验研究[J].中国电机工程学报, 2012, 32(35):37-45. http://www.oalib.com/paper/5142661#.WWMuKeafdYk

    LU Ping, LU Fei, SHU Tong, WANG Qin-chao. Experimental study on adsorption characteristics of SO2 and NO using biomass-pyrolysis chars[J]. Proc CSEE, 2012, 32(35):37-45. http://www.oalib.com/paper/5142661#.WWMuKeafdYk
    [16] 刘杨先, 张军, 盛昌栋, 袁士杰.燃煤烟气脱汞吸附剂最新研宄进展[J].现代化工, 2008, 28(11):19-23. doi: 10.3321/j.issn:0253-4320.2008.11.004

    LIU Yang-xian, ZHANG Jun, SHENG Chang-dong, YUAN Shi-jie. New research progress in sorbents for removal of mercury in coal-fired flue gas[J]. Mod Chem Ind, 2008, 28(11):19-23. doi: 10.3321/j.issn:0253-4320.2008.11.004
    [17] UTSUMI S, VALLEJOS-BURGOS F E, CAMPOS C M, PECCHIB G, RADOVIC L R. Preparation and characterization of inexpensive heterogeneous catalysts for air pollution control:Two case studies[J]. Catal Today, 2007, 123(1/4):208-217. https://www.researchgate.net/profile/Fernando_Vallejos-Burgos/publication/222917802_Preparation_and_characterization_of_inexpensive_heterogeneous_catalysts_for_air_pollution_control_Two_case_studies/links/0046353c4938ec1ba6000000.pdf?inViewer=true&disableCoverPage=true&origin=publication_detail
    [18] LI D, GAO S Q, SONG W L, XU G W. Experimental study of NO reduction over biomass char[J]. Fuel Process Technol, 2007, 88(7):707-715. doi: 10.1016/j.fuproc.2007.02.005
    [19] ROSAS J M, RODRÍGUEZ-MIRASOL J, CORDERO T. NO reduction on carbon-supported chromium catalysts[J]. Energy Fuels, 2010, 24(6):3321-3328. doi: 10.1021/ef901455v
    [20] SZYMANSKI G S, KARPINSKI Z, BINIAK S, SWIATKOWSKI A. The effect of the gradual thermal decomposition of surface oxygen species on the chemical and catalytic properties of oxidized activated carbon[J]. Carbon, 2002, 40(14):2627-2639. doi: 10.1016/S0008-6223(02)00188-4
    [21] GARCÍA-GARCÍA A, ILLN-GÓMEZ M J, LINARES-SOLANO A, SALINAS-MARTINEZ C. Potassium-containing briquetted coal for the reduction of NO[J]. Fuel, 1997, 76(6):499-505. doi: 10.1016/S0016-2361(97)00009-4
    [22] GILCHRIST J D. International Series on Materials Science and Technology[M]. London:Pergamon Press, 1980.
    [23] ILLÁN-GÓMEZ M J, LINARES-SOLANO A, LJUBISA R R, SALINAS-MARTINEZ C. NO reduction by activated carbons. 2. Catalytic effect of potassium[J]. Energy Fuels, 1995, 9(1):97-103. doi: 10.1021/ef00049a015
    [24] WU X, RADOVIC L R. Inhibition of catalytic oxidation of carbon/carbon composites by phosphorus[J]. Carbon, 2006, 44(1):141-151. doi: 10.1016/j.carbon.2005.06.038
    [25] XUE Y, GUO Y, ZHANG Z, WANG Y, LU G. The role of surface properties of activated carbon in the catalytic reduction of NO by carbon[J]. Appl Surf Sci, 2008, 255(5):2591-2595. doi: 10.1016/j.apsusc.2008.07.167
    [26] RADOVIC L R, SUAREZ A, VALLEJOS-BURGOS F, SOFO J O. Oxygen migration on the graphene surface. 2. Thermochemistry of basal-plane diffusion (hopping)[J]. Carbon, 2011, 49(13):4226-4238. doi: 10.1016/j.carbon.2011.05.037
    [27] BUENO-LÓPEZ A, GARCÍA-GARCÍA A, CABALLERO-SUREZ J. Development of a kinetic model for the NOx reduction process by potassium-containing coal pellets[J]. Environ Sci Technol, 2002, 36:5447-5454. doi: 10.1021/es025823y
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  81
  • HTML全文浏览量:  33
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-24
  • 修回日期:  2017-03-31
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-06-10

目录

    /

    返回文章
    返回