留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碱金属碳酸盐改性对Au/TS-1催化剂的丙烯气相环氧化活性和稳定性的提升作用研究

伏劲松 梁武洋 雷骞 孙冰 陈洪林 张小明

伏劲松, 梁武洋, 雷骞, 孙冰, 陈洪林, 张小明. 碱金属碳酸盐改性对Au/TS-1催化剂的丙烯气相环氧化活性和稳定性的提升作用研究[J]. 燃料化学学报(中英文), 2020, 48(10): 1256-1262.
引用本文: 伏劲松, 梁武洋, 雷骞, 孙冰, 陈洪林, 张小明. 碱金属碳酸盐改性对Au/TS-1催化剂的丙烯气相环氧化活性和稳定性的提升作用研究[J]. 燃料化学学报(中英文), 2020, 48(10): 1256-1262.
FU Jin-song, LIANG Wu-yang, LEI Qian, SUN Bing, CHEN Hong-lin, ZHANG Xiao-ming. Enhancement of the activity and stability of Au/TS-1 catalyst in the gas-phase epoxidation of propene through alkali carbonate modification[J]. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1256-1262.
Citation: FU Jin-song, LIANG Wu-yang, LEI Qian, SUN Bing, CHEN Hong-lin, ZHANG Xiao-ming. Enhancement of the activity and stability of Au/TS-1 catalyst in the gas-phase epoxidation of propene through alkali carbonate modification[J]. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1256-1262.

碱金属碳酸盐改性对Au/TS-1催化剂的丙烯气相环氧化活性和稳定性的提升作用研究

基金项目: 

国家自然科学基金 21606258

详细信息
  • 中图分类号: O69

Enhancement of the activity and stability of Au/TS-1 catalyst in the gas-phase epoxidation of propene through alkali carbonate modification

Funds: 

The National Natural Science Foundation of China 21606258

More Information
  • 摘要: 制备了不同碱金属碳酸盐(Na2CO3、K2CO3、Rb2CO3和Cs2CO3)超声浸渍改性的Au/TS-1催化剂,采用XRD、ICP、XPS、UV-vis、NH3-TPD、FT-IR和HAADF-STEM等手段对催化剂结构性质进行了表征,研究了碱金属碳酸盐改性对Au/TS-1催化剂的丙烯气相环氧化活性和稳定性的影响。结果表明,碱金属碳酸盐改性可以降低Au/TS-1催化剂的表面酸性,减缓环氧丙烷(PO)在催化剂表面吸附引起的积炭失活,抑制金颗粒粒径的增大;此外,Cs2CO3和Rb2CO3改性还可减少Au/TS-1催化剂上的骨架外Ti含量。碱金属碳酸盐改性后的Au/TS-1的催化活性和稳定性都得到明显的改善,其中,Cs2CO3改性的Au/TS-1表现出最佳的催化活性,丙烯转化率为6.2%,环氧丙烷选择性为86.2%,氢气利用效率为26.2%。相关研究为提高Au/TS-1催化剂的丙烯气相环氧化活性和稳定性提供了新的思路。
  • 图  1  Au/TS-1和x-Au/TS-1的XRD谱图(a)、UV-vis谱图(b)和O 1s的XPS谱图(c)

    Figure  1  XRD patterns (a), UV-vis spectra (b) and O 1s XPS spectra (c) of the pristine Au/TS-1 and alkali carbonate-modified x-Au/TS-1 catalysts

    图  2  Au/TS-1和x-Au/TS-1新鲜催化剂的HRTEM照片和NH3-TPD谱图

    Figure  2  HR-TEM images and NH3-TPD profiles of the pristine Au/TS-1 and alkali carbonate-modified x-Au/TS-1 catalysts

    图  3  Au/TS-1和x-Au/TS-1催化丙烯气相环氧化的PO时空产率(a)及丙烯转化率、PO选择性及氢效(b)

    Figure  3  Space-time yield of PO via the time on stream (a) and propene conversion, selectivity to PO and H2 efficiency (b) for the gas phase propene epoxidation over the pristine Au/TS-1 and alkali carbonate-modified x-Au/TS-1 catalysts H2, O2, C3H6 and N2 were fed into the reactor (0.15 g catalyst) with the flow rate of 3.5, 3.5, 3.5 and 24.5 mL/min, respectively, with a space velocity of 14000 h-1

    图  4  反应20 h后的Au/TS-1和x-Au/TS-1表面金颗粒的平均粒径及其粒径分布

    Figure  4  HAADF-STEM images and the Au particle size distribution of the spent Au/TS-1 and x-Au/TS-1 catalysts after enduring the propene epoxidation reaction for 20 h

    图  5  Au/TS-1和x-Au/TS-1反应20h后的FT-IR谱图

    Figure  5  FT-IR spectra of the spent Au/TS-1 and x-Au/TS-1 catalysts after enduring the propene epoxidation reaction for 20 h

    表  1  催化剂的结构性质

    Table  1  Textural properties of the fresh Au/TS-1 and x-Au/TS-1 catalysts as well as the spent ones after reaction for 20 h and those treated in oxygen atmosphere at 250℃

    Catalyst Au
    loading w/ %
    Si/ Ti Fresh catalyst Spend for 20 h Treatment at 250℃
    ABET
    /(m2·g-1)
    vtotal
    /(mL·g-1)
    ABET
    /(m2·g-1)
    vtotal
    /(mL·g-1)
    ABET
    /(m2·g-1)
    vtotal
    /(mL·g-1)
    Au/TS-1 0.14 78 374 0.36 117 0.14 375 0.35
    Na-Au/TS-1 0.14 78 348 0.30 233 0.21 347 0.31
    K-Au/TS-1 0.14 78 352 0.30 257 0.26 355 0.32
    Rb-Au/TS-1 0.14 78 355 0.35 273 0.30 360 0.34
    Cs-Au/TS-1 0.14 78 356 0.34 278 0.17 350 0.35
    A: specific surface area; v: volume
    下载: 导出CSV
  • [1] HONG Y, KE L, LI Z, HUANG J, ZHAN G, ZHOU Y, SUN D, ZHANG J, LI Q. Seed-induced zeolitic TS-1 immobilized with bioinspired-Au nanoparticles for propylene epoxidation with O2 and H2[J]. Catal Lett, 2020, 150(6):1798-1811. doi: 10.1007/s10562-019-03086-x
    [2] 燕丰.氯醇法环氧丙烷生产技术及其进展[J].乙醛醋酸化工, 2016, 9:11-13+23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20162016111800056577

    YAN Feng. The production technique and research progress of propylene oxide production by chlorohydrination method[J]. Acetaldehyde Acetic Acid Chem Ind, 2016, 9:11-13+23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20162016111800056577
    [3] 刘雨.环氧丙烷生产工艺的发展现状[J].化工设计通讯:2018, 44(7):156. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgsjtx201807141

    LIU Yu. A preliminary study on the developing of propylene oxide production process[J]. Chem Eng Des Commun, 2018, 44(7):156. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgsjtx201807141
    [4] 宋钊宁, 冯翔, 刘熠斌, 杨朝合, 周兴贵.丙烯直接气相临氢环氧化催化剂结构调控和催化剂构-效关系研究进展[J].化学进展:2016, 28(12):1762-1773. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxjz201612005

    SONG Zhao-ning, FENG Xiang, LIU Yi-bin, YANG Chao-he, ZHOU Xing-gui. Advance in manipulation of catalyst structure and relationship of structure performance for direct propene epoxidation with H2 and O2[J]. Prog Chem, 2016, 28(12):1762-1773. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxjz201612005
    [5] 庞义军, 陈晓晖, 许承志, 雷阳军, 魏可镁.丙烯气相环氧化催化剂及其机理研究[J].化学进展:2014, 26(08):1307-1316. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxjz201408004

    PANG Yi-jun, CHEN Xiao-hui, XU Cheng-zhi, LEI Yang-jun, WEI Ke-mei. Metal catalysts and reaction mechanisms in propylene epoxidation in gas phase by molecular oxygen[J]. Prog Chem, 2014, 26(8):1307-1316. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxjz201408004
    [6] LI Z, GAO L, MA W, ZHONG Q. Higher gold atom efficiency over Au-Pd/TS-1 alloy catalysts for the direct propylene epoxidation with H2 and O2[J]. Appl Surf Sci, 2019, 497. http://www.researchgate.net/publication/335355508_Higher_gold_atom_efficiency_over_Au-PdTS-1_alloy_catalysts_for_the_direct_propylene_epoxidation_with_H2_and_O2
    [7] LI N, CHEN Y, SHEN Q, YANG B, LIU M, WEI L, TIAN W, ZHOU J. TS-1 supported highly dispersed sub-5 nm gold nanoparticles toward direct propylene epoxidation using H2 and O2[J]. J Solid State Chem, 2018, 261:92-102. doi: 10.1016/j.jssc.2018.02.016
    [8] FENG X, SHENG N, LIU Y, CHEN X, CHEN D, YANG C, ZHOU X. Simultaneously enhanced stability and selectivity for propene epoxidation with H2 and O2 on Au catalysts supported on nano-crystalline mesoporous TS-1[J]. Acs Catal, 2017, 7(4):2668-2675. doi: 10.1021/acscatal.6b03498
    [9] YUAN T, ZHU Q, GAO L, GAO J, MA W. The nitriding of titanium silicate-1 and its effect on gas-phase epoxidation of propylene[J]. J Mater Sci, 2020, 55(9):3803-3811. doi: 10.1007/s10853-019-04166-4
    [10] LIU Y W, ZHANG X M, SUO J S. Gold supported on nitrogen-incorporated TS-1 for gas-phase epoxidation of propylene[J]. Chin J Catal, 2013, 34(2):336-340. doi: 10.1016/S1872-2067(11)60474-9
    [11] CHOWDHITRY B, BRAVO-SUAREZ J J, DATE M, TSUBOTA S, HARUTA M. Trimethylamine as a gas-phase promoter:Highly efficient epoxidation of propylene over supported gold catalysts[J]. Angew Chem Int Ed, 2006, 45(3):412-415. doi: 10.1002/anie.200502382
    [12] 黄家辉, 任跃功一种气体助剂改性丙烯环氧化制备环氧丙烷用催化剂及制备和应用.中国,CN 109926098 A[P]. 2018-01-30.

    HUANG Jia-hui, REN Yue-gong. Preparation and application of catalyst which used in gas phase epoxidation of propene to propene oxide by a gas assistant: CN, 109926098 A[P]. 2018-01-30.
    [13] 宋万仓, 熊光, 臧甲忠, 于海斌, 王祥生.碱性添加剂在钛硅分子筛/H2O2催化丙烯环氧化反应中的作用[J].化工进展:2020, 39(3):1021-1028. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgjz202003025

    SONG Wan-cang, XIONG Guang, ZANG Jia-zhong, YU Hai-bin, WANG Xiang-sheng. Effect of basic additive in feedstock on propylene epoxidation catalyzed by TS-1/H2O2[J]. Chem Ind Eng Prog, 2020, 39(3):1021-1028. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgjz202003025
    [14] KHOMANE R B, KULKARNI B D, PARASKAR A, SAINKAR S R. Synthesis, characterization and catalytic performance of titanium silicalite-1 prepared in micellar media[J]. Mater Chem Phys, 2002, 76(1):99-103. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=39bb67068eedadea2cbce670cd0be655
    [15] LEE W-S, AKATAY M C, STACH E A, RIBEIRO H, DELGASS N. Enhanced reaction rate for gas-phase epoxidation of propylene using H2 and O2 by Cs promotion of Au/TS-1[J]. J Catal, 2013, 308:98-113. doi: 10.1016/j.jcat.2013.05.023
    [16] LI Z, MA W, ZHONG Q. Effect of core-shell support on Au/S-1/TS-1 for direct propylene epoxidation and design of catalyst with higher activity[J]. Ind Eng Chem Res, 2019, 58(10):4010-4016. doi: 10.1021/acs.iecr.8b04662
    [17] LI Z, GAO L, ZHU X, MA W, FENG X, ZHONG Q. Synergistic Enhancement over Au-Pd/TS-1 bimetallic catalysts for propylene epoxidation with H2 and O2[J]. ChemCatChem:2019, 11(20):5116-5123. doi: 10.1002/cctc.201900845
    [18] SONG Z, FENG X, SHENG N, LIN D, LI Y, LIU Y, CHEN X, CHEN D, ZHOU X, YANG C. Cost-efficient core-shell TS-1/silicalite-1 supported Au catalysts:Towards enhanced stability for propene epoxidation with H2 and O2[J]. Chem Eng J, 2019, 377. http://www.sciencedirect.com/science/article/pii/S1385894718318059
    [19] SHAM T K, LAZARUS M S. X-ray photoelectron-spectroscopy (XPS) studies of clean and hydrated TiO2(rutile) surfaces[J]. Chem Phys Lett, 1979, 68(2/3):426-432. http://www.sciencedirect.com/science/article/pii/0009261479872310
    [20] ARILLO M A, LOPEZ M L, PICO C, VEIGA M L, JIMENEZ-LOPEZ A, RODRIGUEZ-CASTELLON E. Surface characterisation of spinels with Ti(IV) distributed in tetrahedral and octahedral sites[J]. J Alloys Compd, 2001, 317:160-163. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0b2df51ae6493c7eee921c035b6e6743
    [21] FU J, ZHANG X, LIANG W, LEI Q, SUN B, HE W, DENG G. Direct gas-phase oxidation of propylene to acetone in the presence of H2 and O2 over Au/TS-1 catalyst[J]. Curr Org Synth, 2020. DOI: 10.2174/1570179417666200615154837
    [22] SHENG N, LIU Z, SONG Z, LIN D, FENG X, LIU Y, CHEN X, CHEN D, ZHOU X, YANG C. Enhanced stability for propene epoxidation with H2 and O2 over wormhole-like hierarchical TS-1 supported Au nanocatalyst[J]. Chem Eng J, 2019, 377. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ed5897548f9396b6e71afe6da5918985
    [23] REN Y, HUANG J, LV Q, XIE Y, LU A, HARUTA M. Dual-Component Sodium and Cesium Promoters for Au/TS-1:Enhancement of Propene Epoxidation with Hydrogen and Oxygen[J]. Ind Eng Chem Res, 2020, 59(17):8155-8163. doi: 10.1021/acs.iecr.9b07011
    [24] LEE W-S, AKATAY M C, STACH E A, RIBEIRO H, DELGASS W N. Gas-phase epoxidation of propylene in the presence of H2 and O2 over small gold ensembles in uncalcined TS-1[J]. J Catal, 2014, 313:104-112. doi: 10.1016/j.jcat.2014.02.013
    [25] FENG X, DUAN X, QIAN G, ZHOU X, CHEN D, YUAN W. Insights into size-dependent activity and active sites of Au nanoparticles supported on TS-1 for propene epoxidation with H2 and O2[J]. J Catal, 2014, 317:99-104. doi: 10.1016/j.jcat.2014.05.006
    [26] HONG Y, HUANG J, ZHAN G, LI Q. Biomass-Modified Au/TS-1 as Highly Efficient and Stable Nanocatalysts for Propene Epoxidation with O2 and H2[J]. Ind Eng Chem Res, 2019, 58(48):21953-21960. doi: 10.1021/acs.iecr.9b04107
    [27] MUL G, ZWIJNENBURG A, Van Der LINDEN B, MAKKEE M, MOULIJN J A. Stability and selectivity of Au/TiO2 and Au/TiO2/SiO2 catalysts in propene epoxidation:An in situ FT-IR study[J]. J Catal, 2001, 201(1):128-137. doi: 10.1006/jcat.2001.3239
    [28] LU J, ZHANG X, BRAVO-SUAREZ J J, FUJITANI T, OYAMA S T. Effect of composition and promoters in Au/TS-1 catalysts for direct propylene epoxidation using H2 and O2[J]. Catal Today, 2009, 147(3/4):186-195. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=879a293ff9bb91fd0863941623d4bee4
    [29] LI Z, WANG Y, ZHANG J, WANG D, MA W. Better performance for gas-phase epoxidation of propylene using H2 and O2 at lower temperature over Au/TS-1 catalyst[J]. Catal Commun, 2017, 90:87-90. doi: 10.1016/j.catcom.2016.12.002
    [30] RUIZ A, VAN DER LINDEN B, MAKKEE M, MUL G. Acrylate and propoxy-groups:Contributors to deactivation of Au/TiO2 in the epoxidation of propene[J]. J Catal, 2009, 266(2):286-290. doi: 10.1016/j.jcat.2009.06.019
    [31] QI C, HUANG J, BAO S, SU H, AKITA T, HARUTA M. Switching of reactions between hydrogenation and epoxidation of propene over Au/Ti-based oxides in the presence of H2 and O2[J]. J Catal, 2011, 281(1):12-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1cd01c10cc1b6328b343b5f2c2e18350
    [32] YAO S N, XU L H, WANG J, JING X L, ODOOM-WUBAH T, SUN D D, HUANG J L, LI Q B. Activity and stability of titanosilicate supported Au catalyst for propylene epoxidation with H2 and O2[J]. Mol Catal, 2018, 448:144-152. doi: 10.1016/j.mcat.2018.01.039
    [33] HUYBRECHTS D R C, VAESEN I, LI H X, JACOBS P A. Factors influencing the catalytic activity of titaniumsilicalites in selective oxidations[J]. Catal Lett, 1991, 8(2/4):237-244. doi: 10.1007/BF00764122
    [34] LIU C, HUANG J, SUN D, ZHOU Y, JING X, DU M, WANG H, LI Q. Anatase type extra-framework titanium in TS-1:A vital factor influencing the catalytic activity toward styrene epoxidation[J]. Appl Catal A:Gen, 2013, 459:1-7. doi: 10.1016/j.apcata.2013.03.013
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  180
  • HTML全文浏览量:  69
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-08
  • 修回日期:  2020-07-08
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-10-10

目录

    /

    返回文章
    返回