留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of experimental parameters on Hg0 removal over magnetic AgI-BiOI/CoFe2O4 photocatalysts using wet process

ZHANG Li-xiang ZHANG An-chao ZHU Qi-feng WANG Hua ZHANG Chun-jing

张立享, 张安超, 朱崎峰, 王华, 张春静. 实验参数对磁性AgI-BiOI/CoFe2O4光催化剂湿法脱除Hg0的影响[J]. 燃料化学学报(中英文), 2018, 46(3): 365-374.
引用本文: 张立享, 张安超, 朱崎峰, 王华, 张春静. 实验参数对磁性AgI-BiOI/CoFe2O4光催化剂湿法脱除Hg0的影响[J]. 燃料化学学报(中英文), 2018, 46(3): 365-374.
ZHANG Li-xiang, ZHANG An-chao, ZHU Qi-feng, WANG Hua, ZHANG Chun-jing. Effects of experimental parameters on Hg0 removal over magnetic AgI-BiOI/CoFe2O4 photocatalysts using wet process[J]. Journal of Fuel Chemistry and Technology, 2018, 46(3): 365-374.
Citation: ZHANG Li-xiang, ZHANG An-chao, ZHU Qi-feng, WANG Hua, ZHANG Chun-jing. Effects of experimental parameters on Hg0 removal over magnetic AgI-BiOI/CoFe2O4 photocatalysts using wet process[J]. Journal of Fuel Chemistry and Technology, 2018, 46(3): 365-374.

实验参数对磁性AgI-BiOI/CoFe2O4光催化剂湿法脱除Hg0的影响

基金项目: 

The project was supported by the National Natural Science Foundation of China 51676064

The project was supported by the National Natural Science Foundation of China 51306046

The project was supported by the National Natural Science Foundation of China U1404520

the Young Core Instructor Project in the Higher Education Institutions of Henan Province 2016GGJS-038

the Fundamental Research Funds for the Universities of Henan Province NSFRF140204

the Outstanding Youth Science Foundation of Henan Polytechnic University J2016-1

详细信息
  • 中图分类号: X511

Effects of experimental parameters on Hg0 removal over magnetic AgI-BiOI/CoFe2O4 photocatalysts using wet process

Funds: 

The project was supported by the National Natural Science Foundation of China 51676064

The project was supported by the National Natural Science Foundation of China 51306046

The project was supported by the National Natural Science Foundation of China U1404520

the Young Core Instructor Project in the Higher Education Institutions of Henan Province 2016GGJS-038

the Fundamental Research Funds for the Universities of Henan Province NSFRF140204

the Outstanding Youth Science Foundation of Henan Polytechnic University J2016-1

More Information
  • 摘要: 采用水热-共沉淀法制备了一种新型的磁性AgI-BiOI/CoFe2O4复合材料光催化剂,考察了荧光灯辐照下光催化剂脱除模拟烟气中单质汞(Hg0)的性能,研究了实验参数对脱汞性能的影响及反应产物。结果表明,AgI-BiOI/CoFe2O4光催化剂的热稳定性较差,当煅烧温度超过400 ℃时该光催化剂的化学成分会发生变化;随着催化剂用量、反应溶液pH值、反应溶液温度和烟气中O2浓度的增加,脱汞效率先增加后不变或下降;反应溶液中存在的CO32-和SO42-对脱汞效率有一定的抑制作用;当通入SO2时,脱汞效率急剧下降;而NO对脱汞效率的抑制作用相对较小。反应产物分析表明,SO2、NO和Hg0的最终氧化产物分别是SO42-、NO3-和Hg2+
  • Figure  1  Schematic diagram of the experimental setup

    Figure  2  TG (a) and DSC (b) curve for AgI-BiOI/CoFe2O4

    Figure  3  XRD patterns of the photocatalysts

    Figure  4  Effect of calcination temperature on Hg0 removal efficiency

    conditions: baseline flue gas, t=35 ℃, initial pH=7, solution volume=1 L, FSL radiation intensity=11 W/L, catalyst dosage=200 mg/L

    Figure  5  Effect of reaction solution temperature on Hg0 removal efficiency

    conditions: baseline flue gas, initial pH=7, solution volume=1 L, FSL radiation intensity=11 W/L, catalyst dosage=200 mg/L

    Figure  6  Effect of solution pH on Hg0 removal efficiency

    conditions: baseline flue gas, t=35 ℃, solution volume=1 L, FSL radiation intensity=11 W/L, catalyst dosage=200 mg/L

    Figure  7  Effect of anions in solution on Hg0 removal efficiency

    conditions: baseline flue gas, t=35 ℃, initial pH=7, solution volume=1 L, FSL radiation intensity=11 W/L, catalyst dosage=200 mg/L

    Figure  8  Effect of O2, SO2 and NO on Hg0 removal efficiency

    error bars represent standard deviation of means (n=4) conditions: Hg0=55.0 μ g/m3, t=35 ℃, initial pH=7, solution volume=1 L, FSL radiation intensity=11 W/L, catalyst dosage=200 mg/L

    Figure  9  Effect of catalyst dosage on Hg0 removal efficiency

    conditions: Hg0=55.0 μ g/m3, t=35 ℃, initial pH=7, FSL radiation intensity=11 W/L

    Figure  10  (a) Cycling runs for photocatalytic oxidation of Hg0 over AgI-BiOI/CoFe2O4 and (b) magnetic hysteresis loops for AgI-BiOI/CoFe2O4 after four consecutive runs

    error bars represent standard deviation of means (n=3) conditions: Hg0=55.0 μ g/m3, t=35 ℃, initial pH=7, solution volume=1 L, FSL radiation intensity=11 W/L, catalyst dosage=200 mg/L

    Figure  11  Detection of Hg0 from supernatant liquids by SnCl2 solution

    Table  1  Physical features of AgI-BiOI/CoFe2O4 hybrids calcinated at different temperatures

    Sample BET surface area A/(m2·g-1) Total pore volume v/(cm3·g-1)
    Without calcination 20.7 0.066
    200 ℃ calcination 33.9 0.114
    400 ℃ calcination 15.1 0.056
    600 ℃ calcination 1.5 0.002
    下载: 导出CSV

    Table  2  Reaction products of SO2 and NO by AgI-BiOI/CoFe2O4

    Ion category SO32- SO42- NO2- NO3-
    Measured concentration 0 40.32 mg/L 0 15.50 mg/L
    下载: 导出CSV
  • [1] YANG S J, GUO Y F, YAN N Q, WU D Q, HE H P, XIE J K, QU Z, JIA J P. Remarkable effect of the incorporation of titanium on the catalytic activity and SO2 poisoning resistance of magnetic Mn-Fe spinel for elemental mercury capture[J]. Appl Catal B:Environ, 2011, 10(3/4):698-708. http://www.irgrid.ac.cn/handle/1471x/460393
    [2] ZHOU Q, DUAN Y F, HONG Y G, ZHU C, SHE M, ZHANG J, WEI H Q. Experimental and kinetic studies of gas-phase mercury adsorption by raw and bromine modified activated carbon[J]. Fuel Process Technol, 2015, 134:325-332. doi: 10.1016/j.fuproc.2014.12.052
    [3] YOU C F, XU X C. Coal combustion and its pollution control in China[J]. Energy, 2010, 35(11):4467-4472. doi: 10.1016/j.energy.2009.04.019
    [4] WU J, LI C E, ZHAO X Y, WU Q, QI X M, CHEN X T, HU T, CAO Y. Photocatalytic oxidation of gas-phase Hg0 by CuO/TiO2[J]. Appl Catal B:Environ, 2015, 176/177:559-569. doi: 10.1016/j.apcatb.2015.04.044
    [5] 张华伟, 陈江艳, 赵可, 牛庆欣, 王力. Mn/Ce掺杂改性半焦对模拟煤气中单质汞的脱除性能研究[J].燃料化学学报, 2016, 44(4):394-400. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18805.shtml

    ZHANG Hua-wei, CHEN Jiang-yan, ZHAO Ke, NIU Qing-xin, WANG Li. Removal of vapor-phase elemental mercury from simulated syngas using semi-coke modified by Mn/Ce doping[J]. J Fuel Chem Technol, 2016, 44(4):394-400. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18805.shtml
    [6] HAN L N, HE X X, YUE C X, HU Y F, LI L N, CHANG L P, WANG H, WANG J C. Fe doping Pd/AC sorbent efficiently improving the Hg0 removal from the coal-derived fuel gas[J]. Fuel, 2016, 182:64-72. doi: 10.1016/j.fuel.2016.05.046
    [7] WANG F M, LI G L, SHEN B X, WANG Y Y, HE C. Mercury removal over the vanadia-titania catalyst in CO2-enriched conditions[J]. Chem Eng J, 2015, 263:356-363. doi: 10.1016/j.cej.2014.10.091
    [8] JEON S H, EOM Y J, LEE T G. Photocatalytic oxidation of gas-phase elemental mercury by nanotitanosilicate fibers[J]. Chemosphere, 2008, 71(5):969-974. doi: 10.1016/j.chemosphere.2007.11.050
    [9] WU J, LI X, REN J X, QI X M, HE P, NI B, ZHANG C, HU C Z, ZHOU J. Experimental study of TiO2 hollow microspheres removal on elemental mercury in simulated flue gas[J]. J Ind Eng Chem, 2015, 32:49-57. doi: 10.1016/j.jiec.2015.07.019
    [10] SNIDER G, ARIYA P. Photo-catalytic oxidation reaction of gaseous mercury over titanium dioxide nanoparticle surfaces[J]. Chem Phys Lett, 2010, 491(1/3):23-28. https://www.sciencedirect.com/science/article/pii/S0009261410004604
    [11] SHEN H Z, IE I R, YUAN C S, HUNG C H, CHEN W H, LUO J J, JEN Y H. Enhanced photocatalytic oxidation of gaseous elemental mercury by TiO2 in a high temperature environment[J]. J Hazard Mater, 2015, 289:235-243. doi: 10.1016/j.jhazmat.2015.02.033
    [12] 袁媛, 张军营, 赵永椿, 王宇翔, 郑楚光. SO2和NO浓度对TiO2-硅酸铝纤维脱除元素汞的影响[J].燃料化学学报, 2012, 40(5):630-635. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract17955.shtml

    YUAN Yuan, ZHANG Jun-ying, ZHAO Yong-chun, WANG Yu-xiang, ZHENG Chu-guang. Effects of SO2 and NO on removal of elemental mercury using a TiO2-aluminum silicate fiber[J]. J Fuel Chem Technol, 2012, 40(5):630-635. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract17955.shtml
    [13] LI Y, WU C Y. Kinetic study for photocatalytic oxidation of elemental mercury on a SiO2-TiO2 nanocomposite[J]. Environ Eng Sci, 2007, 24(1):3-12. doi: 10.1089/ees.2007.24.3
    [14] YUAN Y, ZHANG J Y, LI H L, LI Y, ZHAO Y C, ZHENG C G. Simultaneous removal of SO2, NO and mercury using TiO2-aluminum silicate fiber by photocatalysis[J]. Chem Eng J, 2012, 192(2):21-28. http://www.doc88.com/p-9843440989534.html
    [15] QI X M, GU M L, ZHU X Y, WU J, LONG H M, HE K, WU Q. Fabrication of BiOIO3 nanosheets with remarkable photocatalytic oxidation removal for gaseous elemental mercury[J]. Chem Eng J, 2016, 285:11-19. doi: 10.1016/j.cej.2015.09.055
    [16] DONG G H, HO W K, ZHANG L Z. Photocatalytic NO removal on BiOI surface:The change from nonselective oxidation to selective oxidation[J]. Appl Catal B:Environ, 2015, 168/169:490-496. https://www.sciencedirect.com/science/article/pii/S0926337315000193
    [17] OU M, ZHONG Q, ZHANG S L, NIE H Y, LV Z J, CAI W. Graphene-decorated 3D BiVO4 superstructure:Highly reactive (040) facets formation and enhanced visible-light-induced photocatalytic oxidation of NO in gas phase[J]. Appl Catal B:Environ, 2016, 193:160-169. doi: 10.1016/j.apcatb.2016.04.029
    [18] ZHANG A C, XING W B, ZHANG D, WANG H, CHEN G Y, XIANG J. A novel low-cost method for Hg0removal from flue gas by visible-light-driven BiOX (X=Cl, Br, I) photocatalysts[J]. Catal Commun, 2016, 87:57-61. doi: 10.1016/j.catcom.2016.09.003
    [19] ZHANG A C, ZHANG L X, CHEN X Z, ZHU Q F, LIU Z C, XIANG J. Photocatalytic oxidation removal of Hg0 using ternary Ag/AgI-Ag2CO3 hybrids in wet scrubbing process under fluorescent light[J]. Appl Surf Sci, 2017, 392:1107-1116. doi: 10.1016/j.apsusc.2016.09.116
    [20] ZHANG L X, ZHANG A C, LU H, SUN Z J, SHENG W, SUN L S, XIANG J. Magnetically separable AgI-BiOI/CoFe2O4 hybrid composites for Hg0 removal:Characterization, activity and mechanism[J]. RSC Adv, 2017, 7(50):31448-31456. doi: 10.1039/C7RA04175F
    [21] CHENG H F, HUANG B B, DAI Y, QIN X Y, ZHANG X Y. One-Step synthesis of the nanostructured AgI/BiOI composites with highly enhanced visible-light photocatalytic performances[J]. Langmuir, 2010, 26(9):6618-6624. doi: 10.1021/la903943s
    [22] YU C L, FAN C F, YU J C, ZHOU W Q, YANG K. Preparation of bismuth oxyiodides and oxides and their photooxidation characteristic under visible/UV light irradiation[J]. Mater Res Bull, 2011, 46(1):140-146. doi: 10.1016/j.materresbull.2010.08.013
    [23] CAO J, LI X, LIN H L, XU B Y, LUO B D, CHEN S F. Low temperature synthesis of novel rodlike Bi5O7I with visible light photocatalytic performance[J]. Mater Lett, 2012, 76(6):181-183. https://www.sciencedirect.com/science/article/pii/S0925838817304371
    [24] RAUF M A, MARZOUKI N, KORBAHTI B K. Photolytic decolorization of Rose Bengal by UV/H2O2 and data optimization using response surface method[J]. J Hazard Mater, 2008, 159(2/3):602-609. doi: 10.1021/jp909855p
    [25] SANTIAGO D E, ARANA J, GONZÁLEZ-D O, ALEMÁN-D M E, ACOSTA-D A C, FERNANDEZ-R C, PÉREZ-P J, DONA-R J M. Effect of inorganic ions on the photocatalytic treatment of agro-industrial wastewaters containing imazalil[J]. Appl Catal B:Environ, 2014, 156/157(3):284-292. https://www.sciencedirect.com/science/article/pii/S0926337314001775
    [26] CHEN J, HU Z, WANG D, GAO C, JI R. Photocatalytic mineralization of dimethoate in aqueous solutions using TiO2:Parameters and by-products analysis[J]. Desalination, 2010, 258(1):28-33. https://www.sciencedirect.com/science/article/pii/S0011916410002092
    [27] ZHAO Y, HAO R L. Macrokinetics of Hg0 removal by a vaporized multicomponent oxidant[J]. Ind Eng Chem Res, 2014, 53(27):10899-10905. doi: 10.1021/ie5009376
    [28] XIA D H, HU L L, HE C, PAN W Q, YANG T S, YANG Y C, SHU D. Simultaneous photocatalytic elimination of gaseous NO and SO2 in a BiOI/Al2O3-padded trickling scrubber under visible light[J]. Chem Eng J, 2015, 279:929-938. doi: 10.1016/j.cej.2015.05.097
    [29] KIM J, LEE C W, CHOI W. Platinized WO3 as an environmental photocatalyst that generates OH radicals under visible light[J]. Environ Sci Technol, 2010, 44(17):6849-6854. doi: 10.1021/es101981r
    [30] LIU Y X, ZHANG J, SHENG C D, ZHANG Y C, ZHAO L. Simultaneous removal of NO and SO2 from coal-fired flue gas by UV/H2O2 advanced oxidation process[J]. Chem Eng J, 2010, 162(3):1006-1011. doi: 10.1016/j.cej.2010.07.009
    [31] LASEK J, YU Y H, WU J C S. Removal of NOx by photocatalytic processes[J]. J Photochem Photobiol C, 2013, 14(1):29-52. doi: 10.1021/jp912201h?src=recsys
    [32] MCLARNON C R, GRANITE E J, PENNLINE H W. The PCO Process for photochemical removal of mercury from flue gas[J]. Fuel Process Technol, 2005, 87(1):85-89. doi: 10.1016/j.fuproc.2005.07.001
    [33] LIU Y X, ZHANG J, SHENG C D, ZHANG Y C, ZHAO L. Preliminary study on a new technique for wet removal of nitric oxide from simulated flue gas with an ultraviolet (UV)/H2O2 process[J]. Energy Fuels, 2010, 24(9):4925-4930. doi: 10.1021/ef1006325
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  24
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-15
  • 修回日期:  2018-02-03
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-03-10

目录

    /

    返回文章
    返回