留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超临界水热极速合成异质结构H4SiW12O40/Bi2WO6光催化剂及其脱氮性能

邢宸

邢宸. 超临界水热极速合成异质结构H4SiW12O40/Bi2WO6光催化剂及其脱氮性能[J]. 燃料化学学报(中英文), 2020, 48(3): 378-384.
引用本文: 邢宸. 超临界水热极速合成异质结构H4SiW12O40/Bi2WO6光催化剂及其脱氮性能[J]. 燃料化学学报(中英文), 2020, 48(3): 378-384.
XING Chen. Preparation of H4SiW12O40/Bi2WO6 nano-photocatalyst by supercritical hydrothermal synthesis and its photocatalysis denitrification performance[J]. Journal of Fuel Chemistry and Technology, 2020, 48(3): 378-384.
Citation: XING Chen. Preparation of H4SiW12O40/Bi2WO6 nano-photocatalyst by supercritical hydrothermal synthesis and its photocatalysis denitrification performance[J]. Journal of Fuel Chemistry and Technology, 2020, 48(3): 378-384.

超临界水热极速合成异质结构H4SiW12O40/Bi2WO6光催化剂及其脱氮性能

详细信息
    通讯作者:

    邢宸, Tel: 0459-5902692, E-mail:xingchen_dod@petrochina.com.cn

  • 中图分类号: O643

Preparation of H4SiW12O40/Bi2WO6 nano-photocatalyst by supercritical hydrothermal synthesis and its photocatalysis denitrification performance

  • 摘要: 采用超临界水热合成方式极速合成一种H4SiW12O40/Bi2WO6光催化剂,通过X射线衍射(XRD)、场发射扫描电子显微镜(SEM)、透射电子显微镜(TEM)、比表面积及孔隙度(BET)测定对所合成催化剂的结构和性质进行了考察,并以吡啶含量为15 mg/g的模拟油对光催化剂的脱氮效果进行评价。结果表明,该光催化剂为二维纳米片自组装成的三维球状结构,其中,H4SiW12O40与Bi2WO6不是简单的固载关系而是在超临界水热条件下生成一种新的晶相,正是由于这种晶相的存在,使得H4SiW12O40牢固固载在Bi2WO6光催化剂本体上的同时,对光生载流子进行了有效疏导,提升了H4SiW12O40/Bi2WO6光催化剂的使用寿命和光催化活性。本研究针对光催化剂制备周期与晶形发育的矛盾,将超临界水热技术与光催化剂模板导向合成技术有机结合,在获得良好晶形异质结构H4SiW12O40/Bi2WO6光催化剂的同时明显缩短了光催化剂的制备周期,从而降低了催化剂的制备成本,攻克了光催化剂工业化应用的主要矛盾,所制备的H4SiW12O40/Bi2WO6光催化剂轻质油脱氮效率达97%以上。
  • 图  1  采用超临界水热法制备的固载不同含量H4SiW12O40的H4SiW12O40/Bi2WO6光催化剂的XRD谱图

    Figure  1  XRD patterns of H4SiW12O40/Bi2WO6 with different H4SiW12O40 loadings prepared by supercritical hydrothermal synthesis

    w(H4SiW12O40): a: 10%; b: 15%; c: 20%; d: 25%; e: 30%
    ◆: Bi2WO6; ●: Bi2SiWO2

    图  2  采用超临界水热法制备的H4SiW12O40固载量(w=20%)的H4SiW12O40/Bi2WO6光催化剂的扫描电镜照片

    Figure  2  SEM images of H4SiW12O40/Bi2WO6 (H4SiW12O40 w=20%)prepared by supercritical hydrothermal synthesis

    图  3  采用超临界水热法制备的H4SiW12O40固载量(w=20%)的H4SiW12O40/Bi2WO6光催化剂的透射电镜照片

    Figure  3  TEM images of H4SiW12O40/Bi2WO6 (H4SiW12O40 w=20%) prepared by supercritical hydrothermal synthesis

    图  4  不同方法制备的催化剂的紫外可见漫反射光谱谱图

    Figure  4  UV-vis diffuse reflectance of catalysts

    a: H4SiW12O40/Bi2WO6 (H4SiW12O40 w=20%)prepared by supercritical hydrothermal synthesis;
    b: H4SiW12O40/Bi2WO6 (H4SiW12O40 w=20%) prepared by traditional liquid phase synthesiss; c: Bi2WO6

    图  5  硅钨酸-钨酸铋耦合机理示意图

    Figure  5  Mechanism of H4SiW12O40/Bi2WO6 coupling

    图  6  传统水热法(a)和超临界水热法(b)制备的催化剂的氮气吸附-脱附等温线

    Figure  6  N2 adsorption-desorption isotherms for (a) the catalyst prepared by traditional liquid phase synthesis and (b) the catalyst prepared by supercritical hydrothermal synthesis

    图  7  传统水热法(a)和超临界水热法(b)制备的催化剂的孔径分布

    Figure  7  BJH pore size distribution curves of (a) the catalyst prepared by traditional liquid phase synthesis and (b) the catalyst prepared by supercritical hydrothermal synthesis

    图  8  采用超临界水热制备条件下H4SiW12O40固载量对H4SiW12O40/Bi2WO6光催化剂脱氮性能的影响

    Figure  8  Denitrification performance of H4SiW12O40/Bi2WO6 with different H4SiW12O40 loadings prepared by supercritical hydrothermal synthesis

    图  9  不同方法制备的催化剂脱氮性能对比

    Figure  9  Denitrification performance of catalystsprepared by different methods

    : supercritical-H4SiW12O40/Bi2WO6; : traditional-H4SiW12O40/Bi2WO6; : Bi2WO6

    表  1  传统水热法(a)和超临界水热法(b)制备的催化剂比表面积及平均孔径

    Table  1  Specific surface area of the catalysts

    Specific surface
    area A/(m2·g-1)
    Average pore
    size d/nm
    a 24.87 4.89
    b 30.15 3.92
    下载: 导出CSV

    表  2  不同方法制备周期对比

    Table  2  Preparation period of the catalyst

    Traditional
    phase
    synthesis
    Microwave-
    assisted liquid
    phase synthesis
    Supercritical
    hydrothermal
    synthesis
    12h 6h 10s
    下载: 导出CSV
  • [1] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358):37-38. doi: 10.1038/238037a0
    [2] TANTIS I, BOUSIAKOU L, KARIKAS G A, LIANOS P. Photocatalytic and hotoelectrocatalytic degradation of the antibacterial agent ciprofloxacin[J]. Photochem Photobiol Sci, 2015, 14(3):603-607. doi: 10.1039/C4PP00377B
    [3] CARMONA R J, VELASCO L F, HIDALGO M C, NAVÍO J A, ANIA C O. Boosting the visible-light photoactivity of Bi2WO6 using acidic carbon additives[J]. Appl Catal A:Gen, 2015, 505:467-477. doi: 10.1016/j.apcata.2015.05.011
    [4] TROVO A G, NOGUEIRA R F, AGUERA A, FERNANDEZ-ALBA A R, MALATO S. Degradation of the antibiotic amoxicillin by photo-Fenton process-chemical and toxicological assessment[J]. Water Res, 2011, 45(3):1394-1402. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=73838d2c89f510f4f0a9134e7098ec3b
    [5] XUE J, MA S, ZHOU Y, ZHANG Z, HE M. Facile photochemical synthesis of Au/Pt/gC3N4 with plasmon-enhanced photocatalytic activity for antibiotic aegradation[J]. ACS Appl Mater Inter, 2015, 7(18):9630-9637.
    [6] LIU G, HAN K, YE H, ZHU C, GAO Y, LIU Y, ZHOU Y. Graphene oxide/triethanolamine modified titanate nanowires as photocatalytic membrane for water treatment[J]. Chem Eng J, 2017, 320:74-80. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ecff7b05d85a64a05d9f44e0af421850
    [7] WANG X, NI Q, ZENG D, LIAO G, XIE C. Charge separation in branched TiO2 nanorod array homojunction aroused by quantum effect for enhanced photocatalytic decomposition of gaseous benzene[J]. Appl Surf Sci, 2016, 389:165-172. doi: 10.1016/j.apsusc.2016.07.090
    [8] HOA P T, MANAGAKI S, NAKADA N, TAKADA H, SHIMIZU A, ANH D H, VIET P H, SUZUKI S. Antibiotic contamination and occurrence of antibiotic-resistant bacteria in aquatic environments of northern Vietnam[J]. Sci Total Environ, 2011, 409(15):2894-2901. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fb86a2186b883efa29a45c2dc9fc26bf
    [9] WANG J, TANG L, ZENG G, DENG Y, LIU Y, WANG L. Atomic scale g-C3N4/Bi2WO6 2D/2D heterojunction with enhanced photocatalytic degradation of ibuprofen under visible light irradiation[J]. Appl Catal B:Environ, 2017, 209:285-294. doi: 10.1016/j.apcatb.2017.03.019
    [10] MENG X, ZHANG Z. Plasmonic Z-scheme Ag2O-Bi2MoO6 p-n heterojunction photocatalysts with greatly enhanced visible-light responsive activities[J]. Mater Lett, 2017, 189:267-270. doi: 10.1016/j.matlet.2016.11.114
    [11] MENG X, ZHANG Z. Bi2MoO6 co-modified by reduced graphene oxide and palladium(Pd2+ and Pd0) with enhanced photocatalytic decomposition of phenol[J]. Appl Catal B:Environ, 2017, 209:383-393. doi: 10.1016/j.apcatb.2017.01.033
    [12] ZHOU X, GAN L, ZHANG Q, XIONG X, LI H, ZHONG Z. High performance near-infrared photodetectors based on ultrathin SnS nanobelts grown via physical vapor deposition[J]. J Mater Chem C, 2016, 2111-2116. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=98012db5d51372a3a557fd304b867b73
    [13] MENG X, LI Z, ZENG H, CHEN J, ZHANG Z. MoS2 quantum dots-interspersed Bi2WO6 heterostructures for visible light-induced detoxification and disinfection[J]. Appl Catal B:Environ, 2017, 210:160-172. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=551e897bbf52e3b94be23ca178507969
    [14] CHEN D, NIU F, QIN L, WANG S, ZHANG N, HUANG Y. Defective BiFeO3 with surface oxygen vacancies:Facile synthesis and mechanism insight into photocatalytic performance[J]. Sol Energy Mater Sol Cells, 2017, 171:24-32. doi: 10.1016/j.solmat.2017.06.021
    [15] WANG S, HAI X, DING X, CHANG K, XIANG Y, MENG X, YANG Z, CHEN H, YE J. Light-switchable oxygen vacancies in ultrafine Bi5O7Br nanotubes for boosting solar-driven nitrogen fixation in pure water[J]. Adv Mater, 2017, 29(31):1101774. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a64b07bce32716852c84f6e3284412f9
    [16] MENG X, ZHANG Z. Ag/AgCl loaded Bi2WO6 composite:A plasmonic Z-scheme visible light-responsive photocatalyst[J]. Int J Photoenergy, 2016, 1-11. https://www.researchgate.net/publication/298796814_AgAgCl_Loaded_Bi_2_WO_6_Composite_A_Plasmonic_Z-Scheme_Visible_Light-Responsive_Photocatalyst
    [17] LIU X, LU Q, LIU J. Electrospinning preparation of one-dimensional ZnO/Bi2WO6, heterostructured sub-microbelts with excellent photocatalytic performance[J]. J Alloy Compd, 2016, 662:598-606. doi: 10.1016/j.jallcom.2015.12.050
    [18] SONG C, WANG X, ZHANG J, CHEN X, LI C. Enhanced performance of direct zscheme CuS-WO3 system towards photocatalytic decomposition of organic pollutants under visible light[J]. Appl Surf Sci, 2017, 425:788-795. doi: 10.1016/j.apsusc.2017.07.082
    [19] HUANG Y, KANG S, YANG Y, QIN H, NI Z, YANG S. Facile synthesis of Bi/Bi2WO6 nanocomposite with enhanced photocatalytic activity under visible light[J]. Appl Catal B:Environ, 2016, 196:89-99. doi: 10.1016/j.apcatb.2016.05.022
    [20] MENG X, ZHANG Z. Synthesis and characterization of plasmonic and magnetically separable Ag/AgCl-Bi2WO6-Fe3O4-SiO2 core-shell composites for visible light-induced water detoxification[J]. J Colloid Interf Sci, 2017, 485:296-307. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=861f04e19134fa57b0d98efba988ecae
    [21] 刘阳, 季宏伟, 周德凤, 朱晓飞, 李朝晖. TiO2/LaFeO3微纳米纤维的可控制备及光催化性能[J].高等学校化学学报, 2014, 35(1):19-25. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdxxhxxb201401003

    LIU Yang, JI Hong-wei, ZHOU De-feng, ZHU Xiao-fei, LI Zhao-hui.Controllable synthesis and photocatalytic activity of TiO2/LaFeO3 micro-nanofibers[J]. Chem J Chin Univ, 2014, 35(1):19-25. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdxxhxxb201401003
    [22] LITKE A, HENSEN E J M, HOFMANN J P. Role of dissociatively adsorbed water on the formation of shallow trapped electrons in TiO2 photocatalysts[J]. J Chem Phys, 2017, 121:10153-10162. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d3147bc2b815caf434ea7897f13b04e2
    [23] JARAMILLO-PÁEZ C, NAVÍO J A, HIDALGO M C, BOUZIANI A, AZZOUZI M E. Mixed α-Fe2O3/Bi2WO6 oxides for photoassisted hetero-fenton degradation of methyl orange and phenol[J]. J Photochem Photobiol A, 2017, 332:521-533. doi: 10.1016/j.jphotochem.2016.09.031
    [24] MENG X, ZHANG Z. Pd-doped Bi2MoO6 plasmonic photocatalysts with enhanced visible light photocatalytic performance[J]. Appl Surf Sci, 2017, 392:169-180. doi: 10.1016/j.apsusc.2016.08.113
    [25] SH/T 0162-1992, Method for the determination of basic nitrogen in petroleum products[S]. Sinopec Group, 1992.
    [26] 陈颖, 邢宸, 姬生伦, 梁宏宝.微波液相法一步合成H3PW12O40/Bi2WO6光催化剂及其脱氮性能[J].高等学校化学学报, 2014, 35(6):1277-1285. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdxxhxxb201406024

    CHEN Ying, XING Chen, JI Shen-lun, LIANG Hong-bao. One-step preparation of H3PW12O40/Bi2WO6 nano-photocatalysts by microwave liquid process and its photocatalysis denitrification properties[J]. Chem J Chin Univ, 2014, 35(6):1277-1285. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdxxhxxb201406024
    [27] ZHOU L, WANG W Z, ZHANG L S. Ultrasonic-assisted synthesis of visible-light-indyced Bi2MO6(M=W, Mo)[J]. J Mol Catal A:Chem, 2007, 268:195-200. doi: 10.1016/j.molcata.2006.12.026
    [28] TANG J W, ZOU Z G, YE J H. Photophysical and photocatalytic properties of AgInW2O8[J]. Phys Inorg Chem, 2004, 35(10). doi: 10.1021-jp0359891/
    [29] OZER R R, FERRY J L. Investigation of the photocatalytic activity of TiO2-polyoxometalate systems[J]. Environ Sci Technol, 2001, 35(15):3242-3246. doi: 10.1021/es0106568
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  104
  • HTML全文浏览量:  29
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-22
  • 修回日期:  2019-12-24
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-03-10

目录

    /

    返回文章
    返回