留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锰锆复合氧化物CO催化还原NO性能研究

谈冠希 迟姚玲 李双 易玉峰 靳广洲

谈冠希, 迟姚玲, 李双, 易玉峰, 靳广洲. 锰锆复合氧化物CO催化还原NO性能研究[J]. 燃料化学学报(中英文), 2019, 47(10): 1258-1264.
引用本文: 谈冠希, 迟姚玲, 李双, 易玉峰, 靳广洲. 锰锆复合氧化物CO催化还原NO性能研究[J]. 燃料化学学报(中英文), 2019, 47(10): 1258-1264.
TAN Guan-xi, CHI Yao-ling, LI Shuang, YI Yu-feng, JIN Guang-zhou. Performance of manganese-zirconium composite oxide in the catalytic reduction of NO by CO[J]. Journal of Fuel Chemistry and Technology, 2019, 47(10): 1258-1264.
Citation: TAN Guan-xi, CHI Yao-ling, LI Shuang, YI Yu-feng, JIN Guang-zhou. Performance of manganese-zirconium composite oxide in the catalytic reduction of NO by CO[J]. Journal of Fuel Chemistry and Technology, 2019, 47(10): 1258-1264.

锰锆复合氧化物CO催化还原NO性能研究

基金项目: 

国家重点基础研究发展计划 973 program, 2012CB215002

详细信息
  • 中图分类号: O643.36

Performance of manganese-zirconium composite oxide in the catalytic reduction of NO by CO

Funds: 

the National Basic Research Program of China 973 program, 2012CB215002

More Information
  • 摘要: 采用柠檬酸络合法制备了锰锆复合氧化物催化剂,用XRD、H2-TPR、XPS和SEM等技术进行了表征,研究了其CO催化还原NO性能。结果表明,MnOx主要以Mn3O4物相存在,Zr占比的增加会促进Mn3O4物相的分散,引起Mn3O4平均晶粒粒径减小;Mn主要有Mn2+、Mn3+、Mn4+离子价态形式,添加Cu和Ce后,(Mn3++Mn4+)含量和表面吸附氧(OA)含量增加,H2-TPR还原峰温度向低温区偏移,有利于催化活性的提升。Mn-Zr-O复合氧化物的CO催化还原NO活性较低,加入Cu后的Mn-Cu-Zr-O复合氧化物其CO催化还原NO的活性得到改善,而添加Ce后所制备的Mn-Cu-Ce-Zr-O复合氧化物的催化活性进一步提高;在350 ℃下、反应空速为18000 h-1时,Mn-Cu-Ce-Zr-O复合氧化物表现出较好的CO催化还原NO活性,CO转化率达到了89.17%,NO转化率达到了91.70%。
  • 图  1  锰系复合氧化物的XRD谱图

    Figure  1  XRD patterns of Mn-based composite oxides

    a: MnOx; b: Mn-Zr-O; c: Mn-Cu-Zr-O; d: Mn-Cu-Ce-Zr-O; e: ZrO2

    图  2  复合氧化物的H2-TPR谱图

    Figure  2  H2-TPR profiles of various Mn-Zr-O composites

    a: MnOx; b:Mn-Zr-O; c: Mn-Cu-Zr-O; d: Mn-Cu-Ce-Zr-O

    图  3  三种复合氧化物中Mn 2p(a)、O 1s (b)的XPS谱图

    Figure  3  Mn 2p(a)、O 1s (b) XPS spectra of three composite oxides

    图  4  锰基复合氧化物的SEM照片(×104)

    Figure  4  SEM images of Mn-based composite oxides (magnified 10000 times)

    图  5  催化剂的CO和NO转化率

    Figure  5  CO (a) and NO (b) conversion for catalytic reduction of NO by CO over various Mn-based composite oxides

    表  1  Mn-Zr-O复合氧化物Mn3O4物相晶胞参数及晶胞体积

    Table  1  Crystal cell parameters and unit cell volume of Mn3O4 phase of various Mn-Zr-O composites

    Catalyst 2θ/(°) Mn3O4
    103 211 a/nm b/nm c/nm v0/nm3
    MnOx 32.3349 36.1099 0.5764 0.5764 0.9470 0.3146
    Mn80Zr20O 32.3259 36.0719 0.5771 0.5771 0.9470 0.3153
    (Mn0.8Cu0.2)80Zr20O 32.4159 36.0499 0.5776 0.5776 0.9434 0.3147
    (Mn0.8Cu0.2)80(Ce0.5Zr0.5)20O 32.4649 36.0519 0.5776 0.5776 0.9416 0.3142
    下载: 导出CSV

    表  2  复合氧化物Mn3O4物相平均晶粒粒径

    Table  2  Average grain size of Mn3O4 phase of various Mn-Zr-O composites

    Catalyst Mn3O4(103)
    2θ/(°) full width at half maximum(β) average crystallite size d/nm
    MnOx 32.3349 0.223 92.19
    Mn80Zr20O 32.3259 0.738 11.98
    (Mn0.8Cu0.2)80Zr20O 32.4159 0.760 11.60
    (Mn0.8Cu0.2)80(Ce0.5Zr0.5)20O 35.8709 0.966 9.30
    下载: 导出CSV

    表  3  催化剂Mn 2p、O 1s峰曲线拟合结果

    Table  3  Curve fitting results of Mn 2p and O 1s XPS spectra

    Catalyst Ratio/%
    Mn2+/(Mn2++Mn3++Mn4+) (Mn3++Mn4+)/(Mn2++Mn3++Mn4+) OA/(OA+OL)
    Mn-Zr-O 46.87 53.13 31.58
    Mn-Cu-Zr-O 43.19 56.81 34.66
    Mn-Cu-Ce-Zr-O 35.94 64.06 48.27
    下载: 导出CSV
  • [1] TRINH H T, IMANISHI K, MORIKAWAI T, HAGINO H, TAKENAKA N. Gaseous nitrous acid (HONO) and nitrogen oxides (NOx) emission from gasoline and diesel vehicles under real-world driving test cycles[J]. Air Repair, 2017, 67(4): 412-420.
    [2] DIAO B D, DING L, SU P D, CHENG J H. The spatial-temporal characteristics and influential factors of NOx emissions in China: A spatial econometric analysis[J]. Int J Environ Res Public Health, 2018, 15(7): 1405. doi: 10.3390/ijerph15071405
    [3] GE X Y, ZHOU Z M, ZHOU Y L, YE X Y, LIU S L. A spatial panel data analysis of economic growth, urbanization, and NOx emissions in China[J]. Int J Environ Res Public Health, 2018, 15(4): 725. doi: 10.3390/ijerph15040725
    [4] TIBOR B, MILAN V, HRVOJE M, NEVEN D. Numerical modelling of emissions of nitrogen oxides in solid fuel combustion[J]. J Environ Manage, 2018, 215: 177-184. doi: 10.1016/j.jenvman.2018.03.014
    [5] LI J H, PENG Y, CHANG H Z, LI X, RITTENDEN J C, HAO J M. Chemical poison and regeneration of SCR catalysts for NOx removal from stationary sources[J]. Front Environ Sci Eng, 2016, 10(3): 413-427. doi: 10.1007/s11783-016-0832-3
    [6] LIU K, YAO Y Y, WEI L Q, SHI Z F. Preparation and evaluation of Cu-Mn-oxide as high efficiency catalyst for CO oxidation and NO reduction by CO[J]. J Phys Chem C, 2017, 123(23): 12757-12770. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0c85386cb7ae05a7115af1236431c950
    [7] LI K W, CHEN L H, WHITE S J, HAN K, LV B, BAO K J, WU X C, GAO X, AZZI M, CEN K F. Effect of nitrogen oxides (NO and NO2) and toluene on SO2, photooxidation, nucleation and growth: A smog chamber study[J]. Atmos Res, 2017, 192: 38-47. doi: 10.1016/j.atmosres.2017.03.017
    [8] LU P, LI H, LIU H Y, CHEN Y F. Influence of tungsten on the NH3-SCR activity of Mn WOx/TiO2 catalysts[J]. Rsc Adv, 2017, 7(32): 19771-19779. doi: 10.1039/C7RA00427C
    [9] JIANG Y, XING Z M, WANG X C, HUANG S B, WANG X W, LIU Q Y. MoO3 modified CeO2/TiO2 catalyst prepared by a single step sol-gel method for selective catalytic reduction of NO with NH3[J]. J Ind Eng Chem, 2015, 29(1): 43-47. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=deb3b6ae8c0c2fcd192b47bb401604cc
    [10] MA L, SEO C Y, NAHATA M, CHEN X Y, LI J H, SCHWANK J W. Shape dependence and sulfate promotion of CeO2 for selective catalytic reduction of NOx with NH3[J]. Appl Catal B: Environ, 2018, 232(1): 246-259. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=07323cbbb93c6a0dd7cccc469be58026
    [11] XU L W, WANG C Z, CHANG H Z, WU Q R. New insight into SO2 poisoning and regeneration of CeO2-WO3/TiO2 and V2O5-WO3/TiO2 catalysts for low-temperature NH3-SCR[J]. Environ Sci Technol, 2018, 52(12): 7064-7071. doi: 10.1021/acs.est.8b01990
    [12] CHEN L, LI J H, GE M F. The poisoning effect of alkali metals doping over nano V2O5-WO3/TiO2 catalysts on selective catalytic reduction of NOx by NH3[J]. Chem Eng J, 2011, 170(2/3): 531-537. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=399fd63147e1906cfaa41d3df0ae8a45
    [13] WANG H, QU Z P, DONG S C, TANG C. Mechanistic investigation into the effect of sulfuration on the FeW catalysts for the selective catalytic reduction of NOx with NH3[J]. ACS Appl Mater Inter, 2017, 9(8): 7017-7028. doi: 10.1021/acsami.6b14031
    [14] PI Z P, SHEN B X, LIU J C, LIU Y F, ZHAO J G. Reduction of NOx in fluid catalytic cracking flue gas over Mg-Al spinel modified with transition metal oxides[J]. Pet Sci Technol, 2016, 34(24): 1958-1963. doi: 10.1080/10916466.2016.1236275
    [15] JIANG R Y, SHAN H H, ZHANG J L, YANG C H, LI C Y. Synthesis, Characterization and evaluation of sulfur transfer catalysts for FCC flue gas[J]. China Pet Process Petrochem Technol, 2014, 16(2): 59-64.
    [16] KONG L P, MIAO J, LI M H, TAN G X, JIN G Z. CuMnCeLa-O/γ-Al2O3 catalytic combustion denitration performance research[J]. J Mol Catal, 2018, 32(4): 295-304.
    [17] MU J C, LI X Y, SUN W B, FAN S Y. Enhancement of low-temperature catalytic activity over highly dispersed Fe-Mn/Ti catalyst for selective catalytic reduction of NOx with NH3[J]. Ind Eng Chem Res, 2018, 57(31): 10159-10169. doi: 10.1021/acs.iecr.8b01335
    [18] XU H D, ZHANG Q L, QIU C T, LIN T, GONG M C, CHEN Y Q. Tungsten modified MnOx-CeO2/ZrO2 monolith catalysts for selective catalytic reduction of NOx with ammonia[J]. Chem Eng Sci, 2012, 76: 120-128. doi: 10.1016/j.ces.2012.04.012
    [19] TIAN G L, CUI S P, WANG Y L, WANG J F. Different precipitant preparation of nickel-doped Mn/TiO2 catalysts for low-temperature SCR of NO with NH3[J]. Mater Sci Forum, 2018, 913(1): 976-984.
    [20] ZHAO H J, FANG K G, DONG F, LIN M G, SUN Y H, TANG Z C. Textual properties of Cu-Mn mixed oxides and application for methyl formate synthesis from syngas[J]. Ind Eng Chem, 2017, 54(1): 117. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d3c8ee27a10a61f86ccb7eb24d6b1bc7
    [21] HE R X, WANG D D, ZHI K D, WANG B, ZHOU H C, JIANG H Q, LI N, LIU Q S. Cu-Mn catalysts modified by rare earth lanthanum for low temperature water-gas shift reaction[J]. J Rare Earth, 2016, 34(10): 994-1003. doi: 10.1016/S1002-0721(16)60126-6
    [22] QI G, YANG R T. Characterization and FTIR studies of MnOx-CeO2 catalyst for low-temperature selective catalytic reduction of NO with NH3[J]. J Phys Chem B, 2004, 108(40): 15738-15747. doi: 10.1021/jp048431h
    [23] KANG M, PARK E D, KIM J M, YIE J E. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures[J]. Appl Catal A: Gen, 2007, 327(2): 261-269. doi: 10.1016/j.apcata.2007.05.024
    [24] XIA F T, SONG Z X, LIU X, LIU X, YANG Y H, ZHANG Q L, PENG J H. Improved catalytic activity and N2 selectivity of Fe-Mn-Ox catalyst for selective catalytic reduction of NO by NH3 at low temperature[J]. Res Chem Intermed, 2018, 44(1): 1-15.
    [25] LU H F, KONG X X, HUANG H F, ZHOU Y, CHEN Y F. Cu-Mn-Ce ternary mixed-oxide catalysts for catalytic combustion of toluene[J]. J Environ Sci, 2015, 32(6): 102-107. http://d.old.wanfangdata.com.cn/Periodical/jes-e201506012
    [26] ZHANG L, CHEN T J, ZENG S H, SU H Q. Effect of doping elements on oxygen vacancies and lattice oxygen in CeO2-CuO catalysts[J]. J Environ Chem Eng, 2016, 4(3): 2785-2794. doi: 10.1016/j.jece.2016.05.023
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  102
  • HTML全文浏览量:  43
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-28
  • 修回日期:  2019-07-15
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-10-10

目录

    /

    返回文章
    返回